Z. Belak, Joshua A Pickering, Z. Gillespie, G. Audette, M. Eramian, Jennifer A. Mitchell, J. Bridger, A. Kusalik, C. Eskiw
{"title":"响应雷帕霉素和血清剥夺的基因聚集在染色体上,并在局部染色质环境中进行重组。","authors":"Z. Belak, Joshua A Pickering, Z. Gillespie, G. Audette, M. Eramian, Jennifer A. Mitchell, J. Bridger, A. Kusalik, C. Eskiw","doi":"10.1139/bcb-2019-0096","DOIUrl":null,"url":null,"abstract":"We previously demonstrated that genome reorganization, through chromosome territory repositioning, occurred concurrently with significant changes in gene expression in normal primary human fibroblasts treated with the drug rapamycin, or stimulated into quiescence. Although these events occurred concomitantly, it is unclear how specific changes in gene expression relate to reorganization of the genome at higher resolution. Using computational analyses, genome organization assays and microscopy, the relationship between chromosome territory positioning and gene expression was investigated. We determined that despite relocation of chromosome territories, there was no substantial bias in the proportion of genes changing expression on any one chromosome, including chromosomes 10 and 18. Computational analyses identified that clusters of serum deprivation and rapamycin-responsive genes along the linear extent of chromosomes. Chromosome conformation capture (3C) analysis demonstrated the strengthening or loss of specific long-range chromatin interactions in response to rapamycin and quiescence induction, including a cluster of genes containing Interleukin-8 and several chemokine genes on chromosome 4. We further observed that the LIF gene, which is highly induced upon rapamycin treatment, strengthened interactions with up- and down-stream intergenic regions. Our findings indicate that the re-positioning of chromosome territories in response to cell stimuli, this does not reflect gene expression changes occurring within physically clustered groups of genes.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Genes responsive to rapamycin and serum deprivation are clustered on chromosomes and undergo re-organization within local chromatin environments.\",\"authors\":\"Z. Belak, Joshua A Pickering, Z. Gillespie, G. Audette, M. Eramian, Jennifer A. Mitchell, J. Bridger, A. Kusalik, C. Eskiw\",\"doi\":\"10.1139/bcb-2019-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We previously demonstrated that genome reorganization, through chromosome territory repositioning, occurred concurrently with significant changes in gene expression in normal primary human fibroblasts treated with the drug rapamycin, or stimulated into quiescence. Although these events occurred concomitantly, it is unclear how specific changes in gene expression relate to reorganization of the genome at higher resolution. Using computational analyses, genome organization assays and microscopy, the relationship between chromosome territory positioning and gene expression was investigated. We determined that despite relocation of chromosome territories, there was no substantial bias in the proportion of genes changing expression on any one chromosome, including chromosomes 10 and 18. Computational analyses identified that clusters of serum deprivation and rapamycin-responsive genes along the linear extent of chromosomes. Chromosome conformation capture (3C) analysis demonstrated the strengthening or loss of specific long-range chromatin interactions in response to rapamycin and quiescence induction, including a cluster of genes containing Interleukin-8 and several chemokine genes on chromosome 4. We further observed that the LIF gene, which is highly induced upon rapamycin treatment, strengthened interactions with up- and down-stream intergenic regions. Our findings indicate that the re-positioning of chromosome territories in response to cell stimuli, this does not reflect gene expression changes occurring within physically clustered groups of genes.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2019-0096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2019-0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genes responsive to rapamycin and serum deprivation are clustered on chromosomes and undergo re-organization within local chromatin environments.
We previously demonstrated that genome reorganization, through chromosome territory repositioning, occurred concurrently with significant changes in gene expression in normal primary human fibroblasts treated with the drug rapamycin, or stimulated into quiescence. Although these events occurred concomitantly, it is unclear how specific changes in gene expression relate to reorganization of the genome at higher resolution. Using computational analyses, genome organization assays and microscopy, the relationship between chromosome territory positioning and gene expression was investigated. We determined that despite relocation of chromosome territories, there was no substantial bias in the proportion of genes changing expression on any one chromosome, including chromosomes 10 and 18. Computational analyses identified that clusters of serum deprivation and rapamycin-responsive genes along the linear extent of chromosomes. Chromosome conformation capture (3C) analysis demonstrated the strengthening or loss of specific long-range chromatin interactions in response to rapamycin and quiescence induction, including a cluster of genes containing Interleukin-8 and several chemokine genes on chromosome 4. We further observed that the LIF gene, which is highly induced upon rapamycin treatment, strengthened interactions with up- and down-stream intergenic regions. Our findings indicate that the re-positioning of chromosome territories in response to cell stimuli, this does not reflect gene expression changes occurring within physically clustered groups of genes.