Peining Zhen, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu, Hao Yu
{"title":"基于深度张量压缩LSTM神经网络的移动设备快速视频面部表情识别","authors":"Peining Zhen, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu, Hao Yu","doi":"10.1145/3464941","DOIUrl":null,"url":null,"abstract":"Mobile devices usually suffer from limited computation and storage resources, which seriously hinders them from deep neural network applications. In this article, we introduce a deeply tensor-compressed long short-term memory (LSTM) neural network for fast video-based facial expression recognition on mobile devices. First, a spatio-temporal facial expression recognition LSTM model is built by extracting time-series feature maps from facial clips. The LSTM-based spatio-temporal model is further deeply compressed by means of quantization and tensorization for mobile device implementation. Based on datasets of Extended Cohn-Kanade (CK+), MMI, and Acted Facial Expression in Wild 7.0, experimental results show that the proposed method achieves 97.96%, 97.33%, and 55.60% classification accuracy and significantly compresses the size of network model up to 221× with reduced training time per epoch by 60%. Our work is further implemented on the RK3399Pro mobile device with a Neural Process Engine. The latency of the feature extractor and LSTM predictor can be reduced 30.20× and 6.62× , respectively, on board with the leveraged compression methods. Furthermore, the spatio-temporal model costs only 57.19 MB of DRAM and 5.67W of power when running on the board.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"13 1","pages":"1 - 26"},"PeriodicalIF":3.5000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast Video Facial Expression Recognition by a Deeply Tensor-Compressed LSTM Neural Network for Mobile Devices\",\"authors\":\"Peining Zhen, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu, Hao Yu\",\"doi\":\"10.1145/3464941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices usually suffer from limited computation and storage resources, which seriously hinders them from deep neural network applications. In this article, we introduce a deeply tensor-compressed long short-term memory (LSTM) neural network for fast video-based facial expression recognition on mobile devices. First, a spatio-temporal facial expression recognition LSTM model is built by extracting time-series feature maps from facial clips. The LSTM-based spatio-temporal model is further deeply compressed by means of quantization and tensorization for mobile device implementation. Based on datasets of Extended Cohn-Kanade (CK+), MMI, and Acted Facial Expression in Wild 7.0, experimental results show that the proposed method achieves 97.96%, 97.33%, and 55.60% classification accuracy and significantly compresses the size of network model up to 221× with reduced training time per epoch by 60%. Our work is further implemented on the RK3399Pro mobile device with a Neural Process Engine. The latency of the feature extractor and LSTM predictor can be reduced 30.20× and 6.62× , respectively, on board with the leveraged compression methods. Furthermore, the spatio-temporal model costs only 57.19 MB of DRAM and 5.67W of power when running on the board.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"13 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3464941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fast Video Facial Expression Recognition by a Deeply Tensor-Compressed LSTM Neural Network for Mobile Devices
Mobile devices usually suffer from limited computation and storage resources, which seriously hinders them from deep neural network applications. In this article, we introduce a deeply tensor-compressed long short-term memory (LSTM) neural network for fast video-based facial expression recognition on mobile devices. First, a spatio-temporal facial expression recognition LSTM model is built by extracting time-series feature maps from facial clips. The LSTM-based spatio-temporal model is further deeply compressed by means of quantization and tensorization for mobile device implementation. Based on datasets of Extended Cohn-Kanade (CK+), MMI, and Acted Facial Expression in Wild 7.0, experimental results show that the proposed method achieves 97.96%, 97.33%, and 55.60% classification accuracy and significantly compresses the size of network model up to 221× with reduced training time per epoch by 60%. Our work is further implemented on the RK3399Pro mobile device with a Neural Process Engine. The latency of the feature extractor and LSTM predictor can be reduced 30.20× and 6.62× , respectively, on board with the leveraged compression methods. Furthermore, the spatio-temporal model costs only 57.19 MB of DRAM and 5.67W of power when running on the board.