{"title":"中子星合并和夸克物质状态方程","authors":"G. Mathews, Atul Kedia, H. Kim, I. Suh","doi":"10.1051/epjconf/202227401013","DOIUrl":null,"url":null,"abstract":"As neutron stars merge they can approach very high nuclear density. Here, we summarized recent results for the evolution and gravitational wave emission from binary-neutron star mergers using a a variety of nuclear equations of state with and without a crossover transition to quark matter. We discuss how the late time gravitational wave emission from binary neutron star mergers may possibly reveal the existence of a crossover transition to quark matter.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"274 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neutron Star Mergers and the Quark Matter Equation of State\",\"authors\":\"G. Mathews, Atul Kedia, H. Kim, I. Suh\",\"doi\":\"10.1051/epjconf/202227401013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As neutron stars merge they can approach very high nuclear density. Here, we summarized recent results for the evolution and gravitational wave emission from binary-neutron star mergers using a a variety of nuclear equations of state with and without a crossover transition to quark matter. We discuss how the late time gravitational wave emission from binary neutron star mergers may possibly reveal the existence of a crossover transition to quark matter.\",\"PeriodicalId\":11731,\"journal\":{\"name\":\"EPJ Web of Conferences\",\"volume\":\"274 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/202227401013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202227401013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neutron Star Mergers and the Quark Matter Equation of State
As neutron stars merge they can approach very high nuclear density. Here, we summarized recent results for the evolution and gravitational wave emission from binary-neutron star mergers using a a variety of nuclear equations of state with and without a crossover transition to quark matter. We discuss how the late time gravitational wave emission from binary neutron star mergers may possibly reveal the existence of a crossover transition to quark matter.