M. Ducasse, C. Colmard, T. Delahaye, F. Vertallier, Stéphane Rigaud
{"title":"新型摆式海上风力发电机的盆试验验证","authors":"M. Ducasse, C. Colmard, T. Delahaye, F. Vertallier, Stéphane Rigaud","doi":"10.4043/29623-MS","DOIUrl":null,"url":null,"abstract":"\n A new Floating Sub-Structure concept has been developed for Floating Offshore Wind Turbine (FOWT). It consists of a floating tubular sub-structure connected with tendons to a counterweight providing pendulum-restoring forces. The whole floating system is anchored with six low-tension mooring lines. Model tests were carried out in wave basin test facilities at Ecole Centrale de Nantes to provide insight into hydrodynamic behavior of the system under operational and extreme wave conditions. Two installation depths were studied: intermediate and deeper water depth configurations with 75 and 150 meters water depth respectively. Two wind turbine capacities were tested: 8MW and 12MW. Responses of the system were investigated under different irregular wave conditions: operational condition with significant wave height Hs = 4 m and two extreme wave conditions with significant wave heights Hs=8m and 14 m. Sensitivity tests were also performed for various wave periods Tp (Tp = 8, 12 and 16 seconds). Results of these tests demonstrate that the floater is extremely stable with very low pitch motions as well as low vertical & horizontal accelerations both in operational and extreme wave conditions. Detailed results are presented in this paper. This stable dynamic behavior is obtained because natural periods of the floater are far away from wave spectrum peak and it thus leads to low dynamic loads in the mooring lines. This beneficial seakeeping feature and the possibility of accommodating even larger wind turbines with minor modifications on the floater design make the proposed FOWT a relevant concept for the upcoming offshore floating wind market.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basin Test Validation of New Pendulum Offshore Wind Turbine\",\"authors\":\"M. Ducasse, C. Colmard, T. Delahaye, F. Vertallier, Stéphane Rigaud\",\"doi\":\"10.4043/29623-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new Floating Sub-Structure concept has been developed for Floating Offshore Wind Turbine (FOWT). It consists of a floating tubular sub-structure connected with tendons to a counterweight providing pendulum-restoring forces. The whole floating system is anchored with six low-tension mooring lines. Model tests were carried out in wave basin test facilities at Ecole Centrale de Nantes to provide insight into hydrodynamic behavior of the system under operational and extreme wave conditions. Two installation depths were studied: intermediate and deeper water depth configurations with 75 and 150 meters water depth respectively. Two wind turbine capacities were tested: 8MW and 12MW. Responses of the system were investigated under different irregular wave conditions: operational condition with significant wave height Hs = 4 m and two extreme wave conditions with significant wave heights Hs=8m and 14 m. Sensitivity tests were also performed for various wave periods Tp (Tp = 8, 12 and 16 seconds). Results of these tests demonstrate that the floater is extremely stable with very low pitch motions as well as low vertical & horizontal accelerations both in operational and extreme wave conditions. Detailed results are presented in this paper. This stable dynamic behavior is obtained because natural periods of the floater are far away from wave spectrum peak and it thus leads to low dynamic loads in the mooring lines. This beneficial seakeeping feature and the possibility of accommodating even larger wind turbines with minor modifications on the floater design make the proposed FOWT a relevant concept for the upcoming offshore floating wind market.\",\"PeriodicalId\":10968,\"journal\":{\"name\":\"Day 3 Wed, May 08, 2019\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 08, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29623-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29623-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
针对浮式海上风力发电机组,提出了一种新的浮式子结构概念。它由一个浮动的管状子结构组成,该子结构与提供钟摆恢复力的配重的肌腱相连。整个浮式系统由六条低压系泊绳锚定。模型测试在Ecole Centrale de Nantes的波浪池测试设施中进行,以深入了解系统在操作和极端波浪条件下的水动力行为。研究了两种安装深度:中间水深75米和较深水深150米配置。测试了两种风力涡轮机的容量:8MW和12MW。研究了系统在有效波高Hs= 4 m的运行工况和有效波高Hs=8m和14 m的两种极端波高工况下的响应。对不同波周期Tp (Tp = 8、12和16秒)进行敏感性试验。这些测试结果表明,无论是在工作条件还是极端波浪条件下,该浮子在非常低的俯仰运动以及低的垂直和水平加速度下都非常稳定。本文给出了详细的结果。这种稳定的动力特性是由于浮子的自然周期远离波谱峰值,从而使系泊索的动载荷较低。这种有利的耐波性和容纳更大的风力涡轮机的可能性,对浮子设计进行微小的修改,使拟议的FOWT成为即将到来的海上浮式风力市场的相关概念。
Basin Test Validation of New Pendulum Offshore Wind Turbine
A new Floating Sub-Structure concept has been developed for Floating Offshore Wind Turbine (FOWT). It consists of a floating tubular sub-structure connected with tendons to a counterweight providing pendulum-restoring forces. The whole floating system is anchored with six low-tension mooring lines. Model tests were carried out in wave basin test facilities at Ecole Centrale de Nantes to provide insight into hydrodynamic behavior of the system under operational and extreme wave conditions. Two installation depths were studied: intermediate and deeper water depth configurations with 75 and 150 meters water depth respectively. Two wind turbine capacities were tested: 8MW and 12MW. Responses of the system were investigated under different irregular wave conditions: operational condition with significant wave height Hs = 4 m and two extreme wave conditions with significant wave heights Hs=8m and 14 m. Sensitivity tests were also performed for various wave periods Tp (Tp = 8, 12 and 16 seconds). Results of these tests demonstrate that the floater is extremely stable with very low pitch motions as well as low vertical & horizontal accelerations both in operational and extreme wave conditions. Detailed results are presented in this paper. This stable dynamic behavior is obtained because natural periods of the floater are far away from wave spectrum peak and it thus leads to low dynamic loads in the mooring lines. This beneficial seakeeping feature and the possibility of accommodating even larger wind turbines with minor modifications on the floater design make the proposed FOWT a relevant concept for the upcoming offshore floating wind market.