属性语法的最佳划分算法

Wuu Yang
{"title":"属性语法的最佳划分算法","authors":"Wuu Yang","doi":"10.1016/S0096-0551(00)00003-5","DOIUrl":null,"url":null,"abstract":"<div><p>The attribute dependence graph of a syntax tree may be partitioned into disjoint regions. Attribute instances in different regions are independent of one other. The advantages of partitioning the attribute dependence graph include simplifying the attribute grammar conceptually and allowing the possibility of parallel evaluation. We present a static partitioning algorithm for attribute grammars. The algorithm builds the set of all feasible partitions for every production by analyzing the grammar. After the attributed syntax tree is constructed, one of the feasible partitions is chosen for each production instance in the syntax tree. Gluing together the selected partitions for individual production instances results in a partition of the attribute dependence graph of the syntax tree. No further merging or partitioning is needed at evaluation time. In addition to static partitioning, the algorithm always produces the finest partition of every attribute dependence graph. An application of the partitioning technique is the strictness analysis for a simple programming language that contains no higher-order functions.</p></div>","PeriodicalId":100315,"journal":{"name":"Computer Languages","volume":"25 3","pages":"Pages 145-164"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0096-0551(00)00003-5","citationCount":"4","resultStr":"{\"title\":\"A finest partitioning algorithm for attribute grammars\",\"authors\":\"Wuu Yang\",\"doi\":\"10.1016/S0096-0551(00)00003-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The attribute dependence graph of a syntax tree may be partitioned into disjoint regions. Attribute instances in different regions are independent of one other. The advantages of partitioning the attribute dependence graph include simplifying the attribute grammar conceptually and allowing the possibility of parallel evaluation. We present a static partitioning algorithm for attribute grammars. The algorithm builds the set of all feasible partitions for every production by analyzing the grammar. After the attributed syntax tree is constructed, one of the feasible partitions is chosen for each production instance in the syntax tree. Gluing together the selected partitions for individual production instances results in a partition of the attribute dependence graph of the syntax tree. No further merging or partitioning is needed at evaluation time. In addition to static partitioning, the algorithm always produces the finest partition of every attribute dependence graph. An application of the partitioning technique is the strictness analysis for a simple programming language that contains no higher-order functions.</p></div>\",\"PeriodicalId\":100315,\"journal\":{\"name\":\"Computer Languages\",\"volume\":\"25 3\",\"pages\":\"Pages 145-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0096-0551(00)00003-5\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096055100000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Languages","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096055100000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

语法树的属性依赖图可能被分割成不相交的区域。不同区域中的属性实例彼此独立。属性依赖图划分的优点在于从概念上简化了属性语法,并允许并行求值。提出了一种属性语法的静态划分算法。该算法通过分析语法为每个产品构建所有可行分区的集合。构造了属性语法树之后,为语法树中的每个生产实例选择一个可行分区。将各个生产实例的选定分区粘合在一起,生成语法树的属性依赖图的分区。在评估时不需要进一步合并或分区。除了静态划分外,该算法总是对每个属性依赖图产生最优的划分。划分技术的一个应用是对不包含高阶函数的简单编程语言进行严格性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A finest partitioning algorithm for attribute grammars

The attribute dependence graph of a syntax tree may be partitioned into disjoint regions. Attribute instances in different regions are independent of one other. The advantages of partitioning the attribute dependence graph include simplifying the attribute grammar conceptually and allowing the possibility of parallel evaluation. We present a static partitioning algorithm for attribute grammars. The algorithm builds the set of all feasible partitions for every production by analyzing the grammar. After the attributed syntax tree is constructed, one of the feasible partitions is chosen for each production instance in the syntax tree. Gluing together the selected partitions for individual production instances results in a partition of the attribute dependence graph of the syntax tree. No further merging or partitioning is needed at evaluation time. In addition to static partitioning, the algorithm always produces the finest partition of every attribute dependence graph. An application of the partitioning technique is the strictness analysis for a simple programming language that contains no higher-order functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
State inference for dynamically changing interfaces LAILA: a language for coordinating abductive reasoning among logic agents Index to Volume 27, 2001 Argos: an automaton-based synchronous language Visual temporal logic as a rapid prototyping tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1