{"title":"利用文件访问历史加速数据密集型工作流应用程序","authors":"Miki Horiuchi, K. Taura","doi":"10.1109/SC.Companion.2012.31","DOIUrl":null,"url":null,"abstract":"Data I/O has been one of major bottlenecks in the execution of data-intensive workflow applications. Appropriate task scheduling of a workflow can achieve high I/O throughput by reducing remote data accesses. However, most such task scheduling algorithms require the user to explicitly describe files to be accessed by each job, typically by stage-in/stage-out directives in job description, where such annotations are at best tedious and sometime impossible. Thus, a more automated mechanism is necessary. In this paper, we propose a method for predicting input/output files of each job without user-supplied annotations. It predicts I/O files by collecting file access history in a profiling run prior to the production run. We implemented the proposed method in a workflow system GXP Make and a distributed file system Mogami. We evaluate our system with two real workflow applications. Our data-aware job scheduler increases the ratio of local file accesses from 50% to 75% in one application and from 23% to 45% in the other. As a result, it reduces the makespan of the two applications by 2.5% and 7.5%, respectively.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"1 1","pages":"157-165"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Acceleration of Data-Intensive Workflow Applications by Using File Access History\",\"authors\":\"Miki Horiuchi, K. Taura\",\"doi\":\"10.1109/SC.Companion.2012.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data I/O has been one of major bottlenecks in the execution of data-intensive workflow applications. Appropriate task scheduling of a workflow can achieve high I/O throughput by reducing remote data accesses. However, most such task scheduling algorithms require the user to explicitly describe files to be accessed by each job, typically by stage-in/stage-out directives in job description, where such annotations are at best tedious and sometime impossible. Thus, a more automated mechanism is necessary. In this paper, we propose a method for predicting input/output files of each job without user-supplied annotations. It predicts I/O files by collecting file access history in a profiling run prior to the production run. We implemented the proposed method in a workflow system GXP Make and a distributed file system Mogami. We evaluate our system with two real workflow applications. Our data-aware job scheduler increases the ratio of local file accesses from 50% to 75% in one application and from 23% to 45% in the other. As a result, it reduces the makespan of the two applications by 2.5% and 7.5%, respectively.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"157-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acceleration of Data-Intensive Workflow Applications by Using File Access History
Data I/O has been one of major bottlenecks in the execution of data-intensive workflow applications. Appropriate task scheduling of a workflow can achieve high I/O throughput by reducing remote data accesses. However, most such task scheduling algorithms require the user to explicitly describe files to be accessed by each job, typically by stage-in/stage-out directives in job description, where such annotations are at best tedious and sometime impossible. Thus, a more automated mechanism is necessary. In this paper, we propose a method for predicting input/output files of each job without user-supplied annotations. It predicts I/O files by collecting file access history in a profiling run prior to the production run. We implemented the proposed method in a workflow system GXP Make and a distributed file system Mogami. We evaluate our system with two real workflow applications. Our data-aware job scheduler increases the ratio of local file accesses from 50% to 75% in one application and from 23% to 45% in the other. As a result, it reduces the makespan of the two applications by 2.5% and 7.5%, respectively.