各种几何形状注射成型工艺条件推荐的人工神经网络系统的开发

Chihun Lee, Juwon Na, Kyongho Park, Hye-jeong Yu, Jongsun Kim, Kwon-Il Choi, D. Park, Seongjin Park, J. Rho, Seungchul Lee
{"title":"各种几何形状注射成型工艺条件推荐的人工神经网络系统的开发","authors":"Chihun Lee, Juwon Na, Kyongho Park, Hye-jeong Yu, Jongsun Kim, Kwon-Il Choi, D. Park, Seongjin Park, J. Rho, Seungchul Lee","doi":"10.1002/aisy.202000037","DOIUrl":null,"url":null,"abstract":"This study combines an artificial neural network (ANN) and a random search to develop a system to recommend process conditions for injection molding. Both simulation and experimental results are collected using a mixed sampling method that combines Taguchi and random sampling. The dataset consists of 3600 simulations and 476 experiments from 36 different molds. Each datum has five process and 15 geometry features as input and one weight feature as output. Hyper‐parameter tuning is conducted to find the optimal ANN model. Then, transfer learning is introduced, which allows the use of simultaneous experimental and simulation data to reduce the error. The final prediction model has a root mean‐square error of 0.846. To develop a recommender system, random search is conducted using the trained ANN forward model. As a result, the weight‐prediction model based on simulated data has a relative error (RE) of 0.73%, and the weight prediction using the transfer model has an RE of 0.662%. A user interface system is also developed, which can be used directly with the injection‐molding machine. This method enables the setting of process conditions that yield parts having weights close to the target, by considering only the geometry and target weight.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Development of Artificial Neural Network System to Recommend Process Conditions of Injection Molding for Various Geometries\",\"authors\":\"Chihun Lee, Juwon Na, Kyongho Park, Hye-jeong Yu, Jongsun Kim, Kwon-Il Choi, D. Park, Seongjin Park, J. Rho, Seungchul Lee\",\"doi\":\"10.1002/aisy.202000037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study combines an artificial neural network (ANN) and a random search to develop a system to recommend process conditions for injection molding. Both simulation and experimental results are collected using a mixed sampling method that combines Taguchi and random sampling. The dataset consists of 3600 simulations and 476 experiments from 36 different molds. Each datum has five process and 15 geometry features as input and one weight feature as output. Hyper‐parameter tuning is conducted to find the optimal ANN model. Then, transfer learning is introduced, which allows the use of simultaneous experimental and simulation data to reduce the error. The final prediction model has a root mean‐square error of 0.846. To develop a recommender system, random search is conducted using the trained ANN forward model. As a result, the weight‐prediction model based on simulated data has a relative error (RE) of 0.73%, and the weight prediction using the transfer model has an RE of 0.662%. A user interface system is also developed, which can be used directly with the injection‐molding machine. This method enables the setting of process conditions that yield parts having weights close to the target, by considering only the geometry and target weight.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本研究将人工神经网络(ANN)与随机搜索相结合,开发了一个注塑成型工艺条件推荐系统。采用田口抽样和随机抽样相结合的混合抽样方法收集仿真和实验结果。该数据集包括来自36个不同模具的3600次模拟和476次实验。每个基准有5个过程和15个几何特征作为输入,一个权重特征作为输出。进行超参数整定以找到最优的人工神经网络模型。然后,引入迁移学习,允许同时使用实验和仿真数据来减少误差。最终预测模型的均方根误差为0.846。为了开发推荐系统,使用训练好的人工神经网络前向模型进行随机搜索。结果表明,基于模拟数据的权重预测模型的相对误差(RE)为0.73%,而基于迁移模型的权重预测的相对误差(RE)为0.662%。还开发了一个用户界面系统,该系统可以直接与注塑机一起使用。这种方法能够通过只考虑几何形状和目标重量来设置产生零件重量接近目标的工艺条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Artificial Neural Network System to Recommend Process Conditions of Injection Molding for Various Geometries
This study combines an artificial neural network (ANN) and a random search to develop a system to recommend process conditions for injection molding. Both simulation and experimental results are collected using a mixed sampling method that combines Taguchi and random sampling. The dataset consists of 3600 simulations and 476 experiments from 36 different molds. Each datum has five process and 15 geometry features as input and one weight feature as output. Hyper‐parameter tuning is conducted to find the optimal ANN model. Then, transfer learning is introduced, which allows the use of simultaneous experimental and simulation data to reduce the error. The final prediction model has a root mean‐square error of 0.846. To develop a recommender system, random search is conducted using the trained ANN forward model. As a result, the weight‐prediction model based on simulated data has a relative error (RE) of 0.73%, and the weight prediction using the transfer model has an RE of 0.662%. A user interface system is also developed, which can be used directly with the injection‐molding machine. This method enables the setting of process conditions that yield parts having weights close to the target, by considering only the geometry and target weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1