求解赫胥黎方程的神经网络

B. Milićević, M. Ivanovic, B. Stojanovic, Nenad Filipović
{"title":"求解赫胥黎方程的神经网络","authors":"B. Milićević, M. Ivanovic, B. Stojanovic, Nenad Filipović","doi":"10.7251/comen2301043m","DOIUrl":null,"url":null,"abstract":"Biophysical muscle models, also known as Huxley-type models, are appropriate for simulating non-uniform and unsteady contractions. Large-scale simulations can be more challenging to use because this type of model can be computationally intensive. The method of characteristics is typically used to solve Huxley’s muscle equation, which describes the distribution of connected myosin heads to the actin-binding sites. Once this equation is solved, we can determine the generated force and the stiffness of the muscle fibers, which may then be employed in the macro-level simulations of finite element analysis. In our paper, we developed a physics-informed surrogate model that functions similarly to the original Huxley muscle model but uses a lot less computational resources in order to enable more effective use of the Huxley muscle model.","PeriodicalId":10617,"journal":{"name":"Contemporary Materials","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEURAL NETWORKS FOR SOLVING HUXLEY’S EQUATION\",\"authors\":\"B. Milićević, M. Ivanovic, B. Stojanovic, Nenad Filipović\",\"doi\":\"10.7251/comen2301043m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biophysical muscle models, also known as Huxley-type models, are appropriate for simulating non-uniform and unsteady contractions. Large-scale simulations can be more challenging to use because this type of model can be computationally intensive. The method of characteristics is typically used to solve Huxley’s muscle equation, which describes the distribution of connected myosin heads to the actin-binding sites. Once this equation is solved, we can determine the generated force and the stiffness of the muscle fibers, which may then be employed in the macro-level simulations of finite element analysis. In our paper, we developed a physics-informed surrogate model that functions similarly to the original Huxley muscle model but uses a lot less computational resources in order to enable more effective use of the Huxley muscle model.\",\"PeriodicalId\":10617,\"journal\":{\"name\":\"Contemporary Materials\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7251/comen2301043m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7251/comen2301043m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物物理肌肉模型,又称赫胥黎模型,适用于模拟非均匀非定常收缩。大规模模拟使用起来可能更具挑战性,因为这种类型的模型可能需要大量的计算。特征方法通常用于求解赫胥黎肌肉方程,该方程描述了肌动蛋白结合位点连接的肌凝蛋白头的分布。求解该方程后,我们可以确定产生的力和肌纤维的刚度,然后可以用于有限元分析的宏观模拟。在我们的论文中,我们开发了一个物理信息代理模型,其功能与原始赫胥黎肌肉模型相似,但使用的计算资源要少得多,以便更有效地利用赫胥黎肌肉模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NEURAL NETWORKS FOR SOLVING HUXLEY’S EQUATION
Biophysical muscle models, also known as Huxley-type models, are appropriate for simulating non-uniform and unsteady contractions. Large-scale simulations can be more challenging to use because this type of model can be computationally intensive. The method of characteristics is typically used to solve Huxley’s muscle equation, which describes the distribution of connected myosin heads to the actin-binding sites. Once this equation is solved, we can determine the generated force and the stiffness of the muscle fibers, which may then be employed in the macro-level simulations of finite element analysis. In our paper, we developed a physics-informed surrogate model that functions similarly to the original Huxley muscle model but uses a lot less computational resources in order to enable more effective use of the Huxley muscle model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LABORATORY TESTING OF UNSTIMULATED AND STIMULATED SALIVA BUFFERING CAPACITY IN PATIENT AND CONTROL GROUPS AFTER TITRATION WITH HCl AND NaOH NEURAL NETWORKS FOR SOLVING HUXLEY’S EQUATION USE OF 3D-BIOPRINTING IN TISSUE ENGINEERING SCAFFOLD PRODUCTION DETERMINATION OF IRON CONTENT IN NATURAL MINERAL WATER: COMPARISON OF ICP-OES AND SPECTROPHOTOMETRIC METHOD INFLUENCE OF GEOLOGICAL PARAMETERS ON THE INDOOR RADON CONCENTRATION IN THE CITY OF TREBINJE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1