基于超顺磁性金属-有机骨架的ph响应药物递送系统的制备,用于靶向递送奥沙利铂

IF 2.5 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS International Journal of Polymeric Materials and Polymeric Biomaterials Pub Date : 2023-09-22 DOI:10.1080/00914037.2022.2082424
Alireza Kohan Hoosh Nejad, H. Ahmad panahi, E. Keshmirizadeh, Niloufar Torabi Fard
{"title":"基于超顺磁性金属-有机骨架的ph响应药物递送系统的制备,用于靶向递送奥沙利铂","authors":"Alireza Kohan Hoosh Nejad, H. Ahmad panahi, E. Keshmirizadeh, Niloufar Torabi Fard","doi":"10.1080/00914037.2022.2082424","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the magnetic metal-organic framework was synthesized based on a copper organic framework and Fe3O4 magnetic nanoparticles as a novel pH-responsive nanocarrier for oxaliplatin delivery. The magnetic metal-organic framework has been characterized by various analyses, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, CHN analysis, and scanning electron microscopy. The application of the magnetic metal-organic framework as a pH-responsive nanocarrier for oxaliplatin is investigated through in vitro drug release experiments at simulated gastric (pH = 1.2) and simulated intestinal (pH = 7.4) fluids. About 35% of the oxaliplatin was released during 30 min in simulated gastric fluid, while 85% was released in simulated intestinal fluid in 9 h. The metal-organic framework indicated maximum adsorption capacity when the contact time at 10 min, the temperature of 25 °C, the initial concentration of the drug was 20 mg L−1, and pH = 7. Moreover, isotherm studies have shown that oxaliplatin adsorption via this magnetic metal-organic framework was of the Langmuir model. Graphical Abstract","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"147 1","pages":"1083 - 1092"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fabrication of a pH-responsive drug delivery system based on the super-paramagnetic metal-organic framework for targeted delivery of oxaliplatin\",\"authors\":\"Alireza Kohan Hoosh Nejad, H. Ahmad panahi, E. Keshmirizadeh, Niloufar Torabi Fard\",\"doi\":\"10.1080/00914037.2022.2082424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the magnetic metal-organic framework was synthesized based on a copper organic framework and Fe3O4 magnetic nanoparticles as a novel pH-responsive nanocarrier for oxaliplatin delivery. The magnetic metal-organic framework has been characterized by various analyses, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, CHN analysis, and scanning electron microscopy. The application of the magnetic metal-organic framework as a pH-responsive nanocarrier for oxaliplatin is investigated through in vitro drug release experiments at simulated gastric (pH = 1.2) and simulated intestinal (pH = 7.4) fluids. About 35% of the oxaliplatin was released during 30 min in simulated gastric fluid, while 85% was released in simulated intestinal fluid in 9 h. The metal-organic framework indicated maximum adsorption capacity when the contact time at 10 min, the temperature of 25 °C, the initial concentration of the drug was 20 mg L−1, and pH = 7. Moreover, isotherm studies have shown that oxaliplatin adsorption via this magnetic metal-organic framework was of the Langmuir model. Graphical Abstract\",\"PeriodicalId\":14203,\"journal\":{\"name\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"volume\":\"147 1\",\"pages\":\"1083 - 1092\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00914037.2022.2082424\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymeric Materials and Polymeric Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00914037.2022.2082424","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

摘要

摘要本研究以铜有机骨架和Fe3O4磁性纳米颗粒为基础,合成了一种新型的ph响应型奥沙利铂纳米载体。磁性金属有机骨架已被各种分析表征,如傅里叶变换红外光谱、热重分析、CHN分析和扫描电子显微镜。通过模拟胃(pH = 1.2)和模拟肠道(pH = 7.4)液体的体外药物释放实验,研究了磁性金属-有机框架作为奥沙利铂pH响应纳米载体的应用。约35%的奥沙利铂在30 min内释放到模拟胃液中,85%在9 h内释放到模拟肠液中。当接触时间为10 min,温度为25℃,药物初始浓度为20 mg L−1,pH = 7时,金属-有机骨架的吸附量最大。此外,等温线研究表明,通过这种磁性金属-有机框架吸附奥沙利铂符合Langmuir模型。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of a pH-responsive drug delivery system based on the super-paramagnetic metal-organic framework for targeted delivery of oxaliplatin
Abstract In this work, the magnetic metal-organic framework was synthesized based on a copper organic framework and Fe3O4 magnetic nanoparticles as a novel pH-responsive nanocarrier for oxaliplatin delivery. The magnetic metal-organic framework has been characterized by various analyses, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, CHN analysis, and scanning electron microscopy. The application of the magnetic metal-organic framework as a pH-responsive nanocarrier for oxaliplatin is investigated through in vitro drug release experiments at simulated gastric (pH = 1.2) and simulated intestinal (pH = 7.4) fluids. About 35% of the oxaliplatin was released during 30 min in simulated gastric fluid, while 85% was released in simulated intestinal fluid in 9 h. The metal-organic framework indicated maximum adsorption capacity when the contact time at 10 min, the temperature of 25 °C, the initial concentration of the drug was 20 mg L−1, and pH = 7. Moreover, isotherm studies have shown that oxaliplatin adsorption via this magnetic metal-organic framework was of the Langmuir model. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Polymeric Materials and Polymeric Biomaterials
International Journal of Polymeric Materials and Polymeric Biomaterials Chemical Engineering-General Chemical Engineering
CiteScore
8.00
自引率
3.10%
发文量
97
审稿时长
3.3 months
期刊介绍: International Journal of Polymeric Materials and Polymeric Biomaterials is the official publication of the International Society for Biomedical Polymers and Polymeric Biomaterials (ISBPPB). This journal provides a forum for the publication of peer-reviewed, English language articles and select reviews on all aspects of polymeric materials and biomedical polymers. Being interdisciplinary in nature, this journal publishes extensive contributions in the areas of encapsulation and controlled release technologies to address innovation needs as well.
期刊最新文献
Microencapsulation of turmeric oleoresin: complex coacervation and crosslinking strategies for improving encapsulation efficiency and stability in gastrointestinal simulated fluids Cinnamaldehyde-poly (lactic acid)/gelatin nanofibers exhibiting antibacterial and antibiofilm activity Recent advances in medical applications of chitosan-based biomaterials “Polymer blends innovation: Advancement in novel drug delivery” Emerging trends in polysaccharide based cryogel scaffold for skin tissue engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1