Feng Chen, Haibo Xu, Junhui Shi, Xinge Li, Na Zheng
{"title":"基于高能质子放射成像的多材料诊断方法","authors":"Feng Chen, Haibo Xu, Junhui Shi, Xinge Li, Na Zheng","doi":"10.1063/5.0138725","DOIUrl":null,"url":null,"abstract":"Diagnosis of fluids is extremely significant at high temperatures and high pressures. As an advanced imaging technique, high-energy proton radiography has great potential for application to the diagnosis of high-density fluids. In high-energy proton radiography, an angular collimator can control the proton flux and thus enable material diagnosis and reconstruction of density. In this paper, we propose a multi-material diagnostic method using angular collimators. The method is verified by reconstructing the density distribution from the proton flux obtained via theoretical calculations and numerical simulations. We simulate a 20 GeV proton imaging system using the Geant4 software toolkit and obtain the characteristic parameters of single-material objects. We design several concentric spherical objects to verify the method. We discuss its application to detonation tests. The results show that this method can determine the material and boundary information about each component of a multi-material object. Thus, it can be used to diagnose a mixed material and reconstruct densities in a detonation.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-material diagnosis method based on high-energy proton radiography\",\"authors\":\"Feng Chen, Haibo Xu, Junhui Shi, Xinge Li, Na Zheng\",\"doi\":\"10.1063/5.0138725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis of fluids is extremely significant at high temperatures and high pressures. As an advanced imaging technique, high-energy proton radiography has great potential for application to the diagnosis of high-density fluids. In high-energy proton radiography, an angular collimator can control the proton flux and thus enable material diagnosis and reconstruction of density. In this paper, we propose a multi-material diagnostic method using angular collimators. The method is verified by reconstructing the density distribution from the proton flux obtained via theoretical calculations and numerical simulations. We simulate a 20 GeV proton imaging system using the Geant4 software toolkit and obtain the characteristic parameters of single-material objects. We design several concentric spherical objects to verify the method. We discuss its application to detonation tests. The results show that this method can determine the material and boundary information about each component of a multi-material object. Thus, it can be used to diagnose a mixed material and reconstruct densities in a detonation.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0138725\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0138725","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A multi-material diagnosis method based on high-energy proton radiography
Diagnosis of fluids is extremely significant at high temperatures and high pressures. As an advanced imaging technique, high-energy proton radiography has great potential for application to the diagnosis of high-density fluids. In high-energy proton radiography, an angular collimator can control the proton flux and thus enable material diagnosis and reconstruction of density. In this paper, we propose a multi-material diagnostic method using angular collimators. The method is verified by reconstructing the density distribution from the proton flux obtained via theoretical calculations and numerical simulations. We simulate a 20 GeV proton imaging system using the Geant4 software toolkit and obtain the characteristic parameters of single-material objects. We design several concentric spherical objects to verify the method. We discuss its application to detonation tests. The results show that this method can determine the material and boundary information about each component of a multi-material object. Thus, it can be used to diagnose a mixed material and reconstruct densities in a detonation.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.