高动态军舰ARPA系统跟踪模块增益参数优化

B. Pan, Anne Njonjo, Tae-Gweon Jeong
{"title":"高动态军舰ARPA系统跟踪模块增益参数优化","authors":"B. Pan, Anne Njonjo, Tae-Gweon Jeong","doi":"10.5394/KINPR.2016.40.5.241","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to determine the optimal values of the gain parameters used in the tracking module for a highly dynamic warship. The algorithm of the tracking module uses the -- filter to compute accurate estimates and update the state variables, that is, positions, velocity and acceleration. The filtering coefficients ,  and  are determined from set values of the damping parameter, . Optimization is achieved by plotting a range of the damping parameter  against the corresponding residual error and then selecting the best value of ξ with the minimum residual error. Optimal values of the smoothing coefficients are subsequently computed from the selected damping parameter, . Key word : Tracking module, -- filter, optimization, smoothing, prediction, state variables, residual error †Corresponding Author: tgjeong@kmou.ac.kr 051)410-4246 * Representing Author: pbf9527@gmail.com ** njonjoann@gmail.com","PeriodicalId":16242,"journal":{"name":"Journal of Korean navigation and port research","volume":"3 1","pages":"241-247"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of the Gain Parameters in a Tracking Module for ARPA system on Board High Dynamic Warships\",\"authors\":\"B. Pan, Anne Njonjo, Tae-Gweon Jeong\",\"doi\":\"10.5394/KINPR.2016.40.5.241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to determine the optimal values of the gain parameters used in the tracking module for a highly dynamic warship. The algorithm of the tracking module uses the -- filter to compute accurate estimates and update the state variables, that is, positions, velocity and acceleration. The filtering coefficients ,  and  are determined from set values of the damping parameter, . Optimization is achieved by plotting a range of the damping parameter  against the corresponding residual error and then selecting the best value of ξ with the minimum residual error. Optimal values of the smoothing coefficients are subsequently computed from the selected damping parameter, . Key word : Tracking module, -- filter, optimization, smoothing, prediction, state variables, residual error †Corresponding Author: tgjeong@kmou.ac.kr 051)410-4246 * Representing Author: pbf9527@gmail.com ** njonjoann@gmail.com\",\"PeriodicalId\":16242,\"journal\":{\"name\":\"Journal of Korean navigation and port research\",\"volume\":\"3 1\",\"pages\":\"241-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean navigation and port research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5394/KINPR.2016.40.5.241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean navigation and port research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5394/KINPR.2016.40.5.241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是确定用于高动态舰船跟踪模块的增益参数的最优值。跟踪模块的算法采用--滤波器计算准确的估计并更新状态变量,即位置、速度和加速度。滤波系数、和由阻尼参数的设定值确定。通过绘制阻尼参数相对于相应的残差的范围,然后选择残差最小的ξ的最佳值来实现优化。然后从所选的阻尼参数计算出平滑系数的最优值。关键词:跟踪模块,--滤波,优化,平滑,预测,状态变量,残差†通讯作者:tgjeong@kmou.ac.kr 051)410-4246 *代表作者:pbf9527@gmail.com ** njonjoann@gmail.com
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of the Gain Parameters in a Tracking Module for ARPA system on Board High Dynamic Warships
The purpose of this paper is to determine the optimal values of the gain parameters used in the tracking module for a highly dynamic warship. The algorithm of the tracking module uses the -- filter to compute accurate estimates and update the state variables, that is, positions, velocity and acceleration. The filtering coefficients ,  and  are determined from set values of the damping parameter, . Optimization is achieved by plotting a range of the damping parameter  against the corresponding residual error and then selecting the best value of ξ with the minimum residual error. Optimal values of the smoothing coefficients are subsequently computed from the selected damping parameter, . Key word : Tracking module, -- filter, optimization, smoothing, prediction, state variables, residual error †Corresponding Author: tgjeong@kmou.ac.kr 051)410-4246 * Representing Author: pbf9527@gmail.com ** njonjoann@gmail.com
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Basic Study on the Development of Indicators for Measuring the Value of Ocean Education Structural Safety Assessment of Piping Used in Offshore Plants According to Thermal Load and Motion Development and Verification of a Fishing Gear Monitoring System based on Marine IoT Technology Standardized Integration of Different Systems for the Establishment of a Korean Maritime Domain Awareness System A Study on the Demand Analysis of Sharable Resources in the Busan New Port Container Terminal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1