基于离散粒子群优化的无人机协同多任务分配

Shaolei Zhou, Gao-yang Yin, Qingpo Wu
{"title":"基于离散粒子群优化的无人机协同多任务分配","authors":"Shaolei Zhou, Gao-yang Yin, Qingpo Wu","doi":"10.1109/IHMSC.2015.206","DOIUrl":null,"url":null,"abstract":"The combinatorial optimization problem of assigning cooperating unmanned aerial vehicles to multiple tasks is posed by a shared model. A discrete particle swarm optimization algorithm for solving such a problem is proposed. A matrix representation of the algorithm's position vector spaces is employed. A new update strategy for the position and speed of particle is applied in this algorithm. The performance of the algorithm is compared to that of particle swarm optimization algorithm and genetic algorithm for two different cost functions. Simulation results demonstrated the effectiveness and feasibility of the proposed approach.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"9 1","pages":"81-86"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"UAV Cooperative Multiple Task Assignment Based on Discrete Particle Swarm Optimization\",\"authors\":\"Shaolei Zhou, Gao-yang Yin, Qingpo Wu\",\"doi\":\"10.1109/IHMSC.2015.206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combinatorial optimization problem of assigning cooperating unmanned aerial vehicles to multiple tasks is posed by a shared model. A discrete particle swarm optimization algorithm for solving such a problem is proposed. A matrix representation of the algorithm's position vector spaces is employed. A new update strategy for the position and speed of particle is applied in this algorithm. The performance of the algorithm is compared to that of particle swarm optimization algorithm and genetic algorithm for two different cost functions. Simulation results demonstrated the effectiveness and feasibility of the proposed approach.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"9 1\",\"pages\":\"81-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用共享模型提出了协作无人机多任务分配的组合优化问题。针对这一问题,提出了一种离散粒子群优化算法。该算法的位置向量空间采用矩阵表示。该算法采用了一种新的粒子位置和速度更新策略。针对两种不同的代价函数,将该算法与粒子群算法和遗传算法的性能进行了比较。仿真结果验证了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV Cooperative Multiple Task Assignment Based on Discrete Particle Swarm Optimization
The combinatorial optimization problem of assigning cooperating unmanned aerial vehicles to multiple tasks is posed by a shared model. A discrete particle swarm optimization algorithm for solving such a problem is proposed. A matrix representation of the algorithm's position vector spaces is employed. A new update strategy for the position and speed of particle is applied in this algorithm. The performance of the algorithm is compared to that of particle swarm optimization algorithm and genetic algorithm for two different cost functions. Simulation results demonstrated the effectiveness and feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams Analysis of Structural Parameters of Metal Multi-convolution Ring Effects of the Plasma Frequency and the Collision Frequency on the Performance of a Smart Plasma Antenna An Efficient Data Transmission Strategy for Cyber-Physical Systems in the Complicated Environment A Multi-objective Optimization Decision Model Assisting the Land-Use Spatial Districting under Hard Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1