海水淡化厂的操作决策:从过程建模和仿真到机器学习的监测和自动控制

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Decision Support System Technology Pub Date : 2022-12-05 DOI:10.4018/ijdsst.315639
Fátima C. C. Dargam, E. Perz, S. Bergmann, E. Rodionova, Pedro Sousa, Francisco Alexandre A. Souza, Tiago Matias, J. M. Ortiz, A. Estéve-Núñez, Pau Rodenas, Patricia Zamora Bonachela
{"title":"海水淡化厂的操作决策:从过程建模和仿真到机器学习的监测和自动控制","authors":"Fátima C. C. Dargam, E. Perz, S. Bergmann, E. Rodionova, Pedro Sousa, Francisco Alexandre A. Souza, Tiago Matias, J. M. Ortiz, A. Estéve-Núñez, Pau Rodenas, Patricia Zamora Bonachela","doi":"10.4018/ijdsst.315639","DOIUrl":null,"url":null,"abstract":"This paper describes some of the work carried out within the Horizon 2020 project MIDES (MIcrobial DESalination for low energy drinking water), which is developing the world's largest demonstration of a low-energy sys-tem to produce safe drinking water. The work in focus concerns the support for operational decisions on desalination plants, specifically applied to a mi-crobial-powered approach for water treatment and desalination, starting from the stages of process modelling, process simulation, optimization and lab-validation, through the stages of plant monitoring and automated control. The work is based on the application of the environment IPSEpro for the stage of process modelling and simulation; and on the system DataBridge for auto-mated control, which employs techniques of Machine Learning.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operational Decision-Making on Desalination Plants: From Process Modelling and Simulation to Monitoring and Automated Control With Machine Learning\",\"authors\":\"Fátima C. C. Dargam, E. Perz, S. Bergmann, E. Rodionova, Pedro Sousa, Francisco Alexandre A. Souza, Tiago Matias, J. M. Ortiz, A. Estéve-Núñez, Pau Rodenas, Patricia Zamora Bonachela\",\"doi\":\"10.4018/ijdsst.315639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes some of the work carried out within the Horizon 2020 project MIDES (MIcrobial DESalination for low energy drinking water), which is developing the world's largest demonstration of a low-energy sys-tem to produce safe drinking water. The work in focus concerns the support for operational decisions on desalination plants, specifically applied to a mi-crobial-powered approach for water treatment and desalination, starting from the stages of process modelling, process simulation, optimization and lab-validation, through the stages of plant monitoring and automated control. The work is based on the application of the environment IPSEpro for the stage of process modelling and simulation; and on the system DataBridge for auto-mated control, which employs techniques of Machine Learning.\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.315639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.315639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了地平线2020项目MIDES(低能耗饮用水微生物脱盐)中开展的一些工作,该项目正在开发世界上最大的低能耗系统示范,以生产安全饮用水。重点工作涉及支持海水淡化厂的操作决策,特别是应用于水处理和海水淡化的微微生物动力方法,从过程建模、过程模拟、优化和实验室验证阶段开始,一直到工厂监测和自动控制阶段。该工作基于应用环境IPSEpro进行过程建模和仿真阶段;以及采用机器学习技术的自动化控制系统DataBridge。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operational Decision-Making on Desalination Plants: From Process Modelling and Simulation to Monitoring and Automated Control With Machine Learning
This paper describes some of the work carried out within the Horizon 2020 project MIDES (MIcrobial DESalination for low energy drinking water), which is developing the world's largest demonstration of a low-energy sys-tem to produce safe drinking water. The work in focus concerns the support for operational decisions on desalination plants, specifically applied to a mi-crobial-powered approach for water treatment and desalination, starting from the stages of process modelling, process simulation, optimization and lab-validation, through the stages of plant monitoring and automated control. The work is based on the application of the environment IPSEpro for the stage of process modelling and simulation; and on the system DataBridge for auto-mated control, which employs techniques of Machine Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
期刊最新文献
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm Analysis and Evaluation of Roadblocks Hindering Lean-Green and Industry 4.0 Practices in Indian Manufacturing Industries Developing Fuzzy-AHP-Integrated Hybrid MCDM System of COPRAS-ARAS for Solving an Industrial Robot Selection Problem Generalized Parametric Intuitionistic Fuzzy Measures Based on Trigonometric Functions for Improved Decision-Making Problem An Efficient Method to Decide the Malicious Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1