C. Welz, M. Canis, S. Schwenk-Zieger, S. Becker, Vincent Stucke, F. Ihler, P. Baumeister
{"title":"电子烟液体对人口咽粘膜组织培养物的细胞毒性和基因毒性影响。","authors":"C. Welz, M. Canis, S. Schwenk-Zieger, S. Becker, Vincent Stucke, F. Ihler, P. Baumeister","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016652","DOIUrl":null,"url":null,"abstract":"The popularity of electronic cigarettes (ECs) is rapidly growing and ECs are claimed to be an uncritically regarded alternative to conventional cigarettes. The mucosal tissue of the upper aerodigestive tract (UADT) is the first contact organ for xenobiotics such as liquids of ECs. The aim of this study is to investigate the bimolecular effects of e-liquids on human pharyngeal tissue cultures to evaluate whether e-liquids and their components present a risk factor for head and neck squamous cell carcinoma. Fresh tissue samples of healthy oropharyngeal mucosa were assembled into mucosal tissue cultures. Two fruit-flavored liquids (FLs), one tobacco-flavored liquid (TL) (all containing nicotine), and the corresponding base mixtures (free of nicotine and flavor) were used in three different dilutions. Cytotoxicity was assessed using the water-soluble tetrazolium-8 assay. DNA fragmentation was quantified using alkaline microgel electrophoresis. All liquids caused a significant reduction in cell viability. FLs especially showed a higher toxicity than TL. DNA fragmentation significantly increased by incubation with FL, whereas treatment with TL did not show serious DNA damage. E-liquids are cytotoxic to oropharyngeal tissue, and some liquids can induce relevant DNA damage. Thus, mutagenicity for mucosa of the UADT and e-liquids as risk factors for head and neck cancer cannot entirely be ruled out. Only the implementation of standards and regulations for liquid production and distribution can ensure a valid scientific investigation and assessment of carcinogenic potential of long-term EC use.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"30 1","pages":"343-354"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Cytotoxic and Genotoxic Effects of Electronic Cigarette Liquids on Human Mucosal Tissue Cultures of the Oropharynx.\",\"authors\":\"C. Welz, M. Canis, S. Schwenk-Zieger, S. Becker, Vincent Stucke, F. Ihler, P. Baumeister\",\"doi\":\"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of electronic cigarettes (ECs) is rapidly growing and ECs are claimed to be an uncritically regarded alternative to conventional cigarettes. The mucosal tissue of the upper aerodigestive tract (UADT) is the first contact organ for xenobiotics such as liquids of ECs. The aim of this study is to investigate the bimolecular effects of e-liquids on human pharyngeal tissue cultures to evaluate whether e-liquids and their components present a risk factor for head and neck squamous cell carcinoma. Fresh tissue samples of healthy oropharyngeal mucosa were assembled into mucosal tissue cultures. Two fruit-flavored liquids (FLs), one tobacco-flavored liquid (TL) (all containing nicotine), and the corresponding base mixtures (free of nicotine and flavor) were used in three different dilutions. Cytotoxicity was assessed using the water-soluble tetrazolium-8 assay. DNA fragmentation was quantified using alkaline microgel electrophoresis. All liquids caused a significant reduction in cell viability. FLs especially showed a higher toxicity than TL. DNA fragmentation significantly increased by incubation with FL, whereas treatment with TL did not show serious DNA damage. E-liquids are cytotoxic to oropharyngeal tissue, and some liquids can induce relevant DNA damage. Thus, mutagenicity for mucosa of the UADT and e-liquids as risk factors for head and neck cancer cannot entirely be ruled out. Only the implementation of standards and regulations for liquid production and distribution can ensure a valid scientific investigation and assessment of carcinogenic potential of long-term EC use.\",\"PeriodicalId\":94332,\"journal\":{\"name\":\"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer\",\"volume\":\"30 1\",\"pages\":\"343-354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cytotoxic and Genotoxic Effects of Electronic Cigarette Liquids on Human Mucosal Tissue Cultures of the Oropharynx.
The popularity of electronic cigarettes (ECs) is rapidly growing and ECs are claimed to be an uncritically regarded alternative to conventional cigarettes. The mucosal tissue of the upper aerodigestive tract (UADT) is the first contact organ for xenobiotics such as liquids of ECs. The aim of this study is to investigate the bimolecular effects of e-liquids on human pharyngeal tissue cultures to evaluate whether e-liquids and their components present a risk factor for head and neck squamous cell carcinoma. Fresh tissue samples of healthy oropharyngeal mucosa were assembled into mucosal tissue cultures. Two fruit-flavored liquids (FLs), one tobacco-flavored liquid (TL) (all containing nicotine), and the corresponding base mixtures (free of nicotine and flavor) were used in three different dilutions. Cytotoxicity was assessed using the water-soluble tetrazolium-8 assay. DNA fragmentation was quantified using alkaline microgel electrophoresis. All liquids caused a significant reduction in cell viability. FLs especially showed a higher toxicity than TL. DNA fragmentation significantly increased by incubation with FL, whereas treatment with TL did not show serious DNA damage. E-liquids are cytotoxic to oropharyngeal tissue, and some liquids can induce relevant DNA damage. Thus, mutagenicity for mucosa of the UADT and e-liquids as risk factors for head and neck cancer cannot entirely be ruled out. Only the implementation of standards and regulations for liquid production and distribution can ensure a valid scientific investigation and assessment of carcinogenic potential of long-term EC use.