评定对喷射噪声噼啪声的感知

Paul B. Russavage, T. Neilsen, K. Gee, S. H. Swift
{"title":"评定对喷射噪声噼啪声的感知","authors":"Paul B. Russavage, T. Neilsen, K. Gee, S. H. Swift","doi":"10.1121/2.0000821","DOIUrl":null,"url":null,"abstract":"Crackle is a perceptual aspect of noise caused by impulsive acoustic shocks and observed in noise from supersonic jets, including those from military aircraft and rockets. Overall and long-term spectral noise metrics do not account for the unique perception of crackle. Listening tests were designed to better understand perception of crackle and examine its relationship to physical noise metrics, such as skewness of the first time derivative of the pressure waveform, hereafter derivative skewness. It is hypothesized that as derivative skewness increases, the perception of crackle tends to increase. Two listening tests were conducted with 31 subjects to examine their perception of crackle. In the first test, subjects compared and ordered crackle-containing sounds. In the second test, category scaling was employed with subjects rating the crackle content with category labels: 1) smooth noise with no crackle, 2) rough noise with no crackle, 3) sporadic or intermittent crackle, 4) continuous crackle, and 5) intense crackle. Both the order and rating tests confirm there is a high correlation between perception of crackle and derivative skewness. These insights will help inform community noise models, allowing them to incorporate annoyance due to jet crackle.Crackle is a perceptual aspect of noise caused by impulsive acoustic shocks and observed in noise from supersonic jets, including those from military aircraft and rockets. Overall and long-term spectral noise metrics do not account for the unique perception of crackle. Listening tests were designed to better understand perception of crackle and examine its relationship to physical noise metrics, such as skewness of the first time derivative of the pressure waveform, hereafter derivative skewness. It is hypothesized that as derivative skewness increases, the perception of crackle tends to increase. Two listening tests were conducted with 31 subjects to examine their perception of crackle. In the first test, subjects compared and ordered crackle-containing sounds. In the second test, category scaling was employed with subjects rating the crackle content with category labels: 1) smooth noise with no crackle, 2) rough noise with no crackle, 3) sporadic or intermittent crackle, 4) continuous crackle, and 5) in...","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rating the perception of jet noise crackle\",\"authors\":\"Paul B. Russavage, T. Neilsen, K. Gee, S. H. Swift\",\"doi\":\"10.1121/2.0000821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crackle is a perceptual aspect of noise caused by impulsive acoustic shocks and observed in noise from supersonic jets, including those from military aircraft and rockets. Overall and long-term spectral noise metrics do not account for the unique perception of crackle. Listening tests were designed to better understand perception of crackle and examine its relationship to physical noise metrics, such as skewness of the first time derivative of the pressure waveform, hereafter derivative skewness. It is hypothesized that as derivative skewness increases, the perception of crackle tends to increase. Two listening tests were conducted with 31 subjects to examine their perception of crackle. In the first test, subjects compared and ordered crackle-containing sounds. In the second test, category scaling was employed with subjects rating the crackle content with category labels: 1) smooth noise with no crackle, 2) rough noise with no crackle, 3) sporadic or intermittent crackle, 4) continuous crackle, and 5) intense crackle. Both the order and rating tests confirm there is a high correlation between perception of crackle and derivative skewness. These insights will help inform community noise models, allowing them to incorporate annoyance due to jet crackle.Crackle is a perceptual aspect of noise caused by impulsive acoustic shocks and observed in noise from supersonic jets, including those from military aircraft and rockets. Overall and long-term spectral noise metrics do not account for the unique perception of crackle. Listening tests were designed to better understand perception of crackle and examine its relationship to physical noise metrics, such as skewness of the first time derivative of the pressure waveform, hereafter derivative skewness. It is hypothesized that as derivative skewness increases, the perception of crackle tends to increase. Two listening tests were conducted with 31 subjects to examine their perception of crackle. In the first test, subjects compared and ordered crackle-containing sounds. In the second test, category scaling was employed with subjects rating the crackle content with category labels: 1) smooth noise with no crackle, 2) rough noise with no crackle, 3) sporadic or intermittent crackle, 4) continuous crackle, and 5) in...\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

裂纹是由脉冲声冲击引起的噪声的感知方面,在超音速喷气机(包括军用飞机和火箭)的噪声中观察到。总体和长期的频谱噪声度量不能解释对裂纹的独特感知。设计听力测试是为了更好地理解对裂纹的感知,并检查其与物理噪声指标的关系,例如压力波形的第一次导数偏度,之后的导数偏度。假设随着导数偏度的增加,裂纹的感知倾向于增加。对31名受试者进行了两项听力测试,以考察他们对噼啪声的感知。在第一个测试中,受试者比较并排序含有噼啪声的声音。在第二个测试中,采用类别标度法,受试者用类别标签对裂纹内容进行评分:1)平滑噪声无裂纹,2)粗糙噪声无裂纹,3)零星或间歇性裂纹,4)连续裂纹,5)强烈裂纹。顺序和等级测试都证实,裂纹感知和导数偏度之间存在高度相关性。这些见解将有助于建立社区噪音模型,使他们能够将喷气机噼啪声引起的烦恼纳入其中。裂纹是由脉冲声冲击引起的噪声的感知方面,在超音速喷气机(包括军用飞机和火箭)的噪声中观察到。总体和长期的频谱噪声度量不能解释对裂纹的独特感知。设计听力测试是为了更好地理解对裂纹的感知,并检查其与物理噪声指标的关系,例如压力波形的第一次导数偏度,之后的导数偏度。假设随着导数偏度的增加,裂纹的感知倾向于增加。对31名受试者进行了两项听力测试,以考察他们对噼啪声的感知。在第一个测试中,受试者比较并排序含有噼啪声的声音。在第二个测试中,采用类别标度法,受试者用类别标签对裂纹内容进行评分:1)平滑噪声无裂纹,2)粗糙噪声无裂纹,3)零星或间歇性裂纹,4)连续裂纹,5)在…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rating the perception of jet noise crackle
Crackle is a perceptual aspect of noise caused by impulsive acoustic shocks and observed in noise from supersonic jets, including those from military aircraft and rockets. Overall and long-term spectral noise metrics do not account for the unique perception of crackle. Listening tests were designed to better understand perception of crackle and examine its relationship to physical noise metrics, such as skewness of the first time derivative of the pressure waveform, hereafter derivative skewness. It is hypothesized that as derivative skewness increases, the perception of crackle tends to increase. Two listening tests were conducted with 31 subjects to examine their perception of crackle. In the first test, subjects compared and ordered crackle-containing sounds. In the second test, category scaling was employed with subjects rating the crackle content with category labels: 1) smooth noise with no crackle, 2) rough noise with no crackle, 3) sporadic or intermittent crackle, 4) continuous crackle, and 5) intense crackle. Both the order and rating tests confirm there is a high correlation between perception of crackle and derivative skewness. These insights will help inform community noise models, allowing them to incorporate annoyance due to jet crackle.Crackle is a perceptual aspect of noise caused by impulsive acoustic shocks and observed in noise from supersonic jets, including those from military aircraft and rockets. Overall and long-term spectral noise metrics do not account for the unique perception of crackle. Listening tests were designed to better understand perception of crackle and examine its relationship to physical noise metrics, such as skewness of the first time derivative of the pressure waveform, hereafter derivative skewness. It is hypothesized that as derivative skewness increases, the perception of crackle tends to increase. Two listening tests were conducted with 31 subjects to examine their perception of crackle. In the first test, subjects compared and ordered crackle-containing sounds. In the second test, category scaling was employed with subjects rating the crackle content with category labels: 1) smooth noise with no crackle, 2) rough noise with no crackle, 3) sporadic or intermittent crackle, 4) continuous crackle, and 5) in...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Different origins of acoustic streaming at resonance Clinical studies of biceps anisotropy, relaxation and nonlinearity with a medical device for ultrasonic imaging Prospective medical applications of Nonlinear Time Reversal Acoustics Nonlinear relaxation in geomaterials: New results Numerical investigation of self-focused Lamb waves in anisotropic media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1