CLS标签计划的XML数据集和性能测试基准

Alhadi A. Klaib
{"title":"CLS标签计划的XML数据集和性能测试基准","authors":"Alhadi A. Klaib","doi":"10.51984/jopas.v20i2.1243","DOIUrl":null,"url":null,"abstract":"Extensible Markup Language (XML) has become a significant technology for transferring data through the world of the Internet. XML labelling schemes are an essential technique used to handle XML data effectively. Labelling XML data is performed by assigning labels to all nodes in that XML document. CLS labelling scheme is a hybrid labelling scheme that was developed to address some limitations of indexing XML data.  Moreover, datasets are used to test XML labelling schemes. There are many XML datasets available nowadays. Some of them are from real life datasets and others are from artificial datasets. These datasets and benchmarks are used for testing the XML labelling schemes. This paper discusses and considers these datasets and benchmarks and their specifications in order to determine the most appropriate one for testing the CLS labelling scheme. This research found out that the XMark benchmark is the most appropriate choice for the testing performance of the CLS labelling scheme. ","PeriodicalId":12516,"journal":{"name":"Global Journal of Pure and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"XML Dataset and Benchmarks for Performance Testing of the CLS Labelling Scheme\",\"authors\":\"Alhadi A. Klaib\",\"doi\":\"10.51984/jopas.v20i2.1243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensible Markup Language (XML) has become a significant technology for transferring data through the world of the Internet. XML labelling schemes are an essential technique used to handle XML data effectively. Labelling XML data is performed by assigning labels to all nodes in that XML document. CLS labelling scheme is a hybrid labelling scheme that was developed to address some limitations of indexing XML data.  Moreover, datasets are used to test XML labelling schemes. There are many XML datasets available nowadays. Some of them are from real life datasets and others are from artificial datasets. These datasets and benchmarks are used for testing the XML labelling schemes. This paper discusses and considers these datasets and benchmarks and their specifications in order to determine the most appropriate one for testing the CLS labelling scheme. This research found out that the XMark benchmark is the most appropriate choice for the testing performance of the CLS labelling scheme. \",\"PeriodicalId\":12516,\"journal\":{\"name\":\"Global Journal of Pure and Applied Sciences\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Pure and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51984/jopas.v20i2.1243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51984/jopas.v20i2.1243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可扩展标记语言(XML)已经成为通过Internet传输数据的重要技术。XML标记方案是用于有效处理XML数据的基本技术。标记XML数据是通过为该XML文档中的所有节点分配标签来执行的。CLS标记方案是一种混合标记方案,开发它是为了解决索引XML数据的一些限制。此外,数据集用于测试XML标记方案。现在有许多可用的XML数据集。其中一些来自真实生活数据集,另一些来自人工数据集。这些数据集和基准测试用于测试XML标记方案。本文讨论并考虑了这些数据集和基准及其规格,以确定最适合测试CLS标签方案的数据集和基准。本研究发现,XMark基准是CLS标签方案测试性能最合适的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XML Dataset and Benchmarks for Performance Testing of the CLS Labelling Scheme
Extensible Markup Language (XML) has become a significant technology for transferring data through the world of the Internet. XML labelling schemes are an essential technique used to handle XML data effectively. Labelling XML data is performed by assigning labels to all nodes in that XML document. CLS labelling scheme is a hybrid labelling scheme that was developed to address some limitations of indexing XML data.  Moreover, datasets are used to test XML labelling schemes. There are many XML datasets available nowadays. Some of them are from real life datasets and others are from artificial datasets. These datasets and benchmarks are used for testing the XML labelling schemes. This paper discusses and considers these datasets and benchmarks and their specifications in order to determine the most appropriate one for testing the CLS labelling scheme. This research found out that the XMark benchmark is the most appropriate choice for the testing performance of the CLS labelling scheme. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Humic substances in soils of diverse parent materials in humid tropical environment of south east nigeria. Heavy Metal Contamination In Surface Water And Macrobrachium Tissues Along Eagle Island, Niger Delta, Nigeria Synthesis And Characterization Of Optical And Structural Properties Of Inorganic And Green Leaf Doped Sno Thin Films Deposited Using Spray Pyrolysis Comparative Cost-Benefits Analysis Among Rain-Fed And Irrigated Sugarcane Production Farming Systems In Bauchi State, Nigeria Prevalence And Determinants Of Malnutrition Among Under-Five Children In Selected Primary Schools In Nasarawa Town
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1