基于卷积神经网络和77 GHz毫米波雷达的智能液体分类系统

Jiayu Chen, Xinhuai Wang, Yin Xu, Ye Peng, Wen Wang, Junyan Xiang, Qihang Xu
{"title":"基于卷积神经网络和77 GHz毫米波雷达的智能液体分类系统","authors":"Jiayu Chen,&nbsp;Xinhuai Wang,&nbsp;Yin Xu,&nbsp;Ye Peng,&nbsp;Wen Wang,&nbsp;Junyan Xiang,&nbsp;Qihang Xu","doi":"10.1016/j.jiixd.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>An intelligent liquid classification system based on 77 ​GHz ​millimeter wave radar and convolution neural network are proposed in this paper. The data are collected by the AWR1843 radar platform and processed by the neural network on the host PC in real-time. The doppler heatmap generated by radar signal processing is tried for the first time as the input of the system. The information carried by the heatmap in 2 dimensions is analyzed and the reason why the doppler heatmap could be used for classification is explained. The feasible experiment proved that the proposed method can successfully classify 8 kinds of common liquid with high accuracy. The result of the experiment is explained and the limitations of the experiment are discussed. It can be drawn that the combination of FMCW millimeter wave radar and convolution neural network is a method with great potential for liquid classification. The advantages of real time, non-invasive and unilateral measurement can also be used for the detection of dangerous liquids.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 4","pages":"Pages 352-363"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000240/pdfft?md5=1cebbe1c620b36aad1661a58580268ea&pid=1-s2.0-S2949715923000240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Convolution neural network and 77 ​GHz millimeter wave radar based intelligent liquid classification system\",\"authors\":\"Jiayu Chen,&nbsp;Xinhuai Wang,&nbsp;Yin Xu,&nbsp;Ye Peng,&nbsp;Wen Wang,&nbsp;Junyan Xiang,&nbsp;Qihang Xu\",\"doi\":\"10.1016/j.jiixd.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An intelligent liquid classification system based on 77 ​GHz ​millimeter wave radar and convolution neural network are proposed in this paper. The data are collected by the AWR1843 radar platform and processed by the neural network on the host PC in real-time. The doppler heatmap generated by radar signal processing is tried for the first time as the input of the system. The information carried by the heatmap in 2 dimensions is analyzed and the reason why the doppler heatmap could be used for classification is explained. The feasible experiment proved that the proposed method can successfully classify 8 kinds of common liquid with high accuracy. The result of the experiment is explained and the limitations of the experiment are discussed. It can be drawn that the combination of FMCW millimeter wave radar and convolution neural network is a method with great potential for liquid classification. The advantages of real time, non-invasive and unilateral measurement can also be used for the detection of dangerous liquids.</p></div>\",\"PeriodicalId\":100790,\"journal\":{\"name\":\"Journal of Information and Intelligence\",\"volume\":\"1 4\",\"pages\":\"Pages 352-363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949715923000240/pdfft?md5=1cebbe1c620b36aad1661a58580268ea&pid=1-s2.0-S2949715923000240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949715923000240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715923000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于77 GHz毫米波雷达和卷积神经网络的智能液体分类系统。数据由AWR1843雷达平台采集,由上位机的神经网络进行实时处理。首次尝试将雷达信号处理生成的多普勒热图作为系统的输入。分析了二维热图所携带的信息,并解释了多普勒热图可以用于分类的原因。可行的实验证明,该方法能够成功地对8种常见液体进行分类,并具有较高的准确率。对实验结果进行了说明,并讨论了实验的局限性。由此可见,FMCW毫米波雷达与卷积神经网络相结合是一种极具潜力的液体分类方法。实时、无创、单侧测量的优点也可用于危险液体的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolution neural network and 77 ​GHz millimeter wave radar based intelligent liquid classification system

An intelligent liquid classification system based on 77 ​GHz ​millimeter wave radar and convolution neural network are proposed in this paper. The data are collected by the AWR1843 radar platform and processed by the neural network on the host PC in real-time. The doppler heatmap generated by radar signal processing is tried for the first time as the input of the system. The information carried by the heatmap in 2 dimensions is analyzed and the reason why the doppler heatmap could be used for classification is explained. The feasible experiment proved that the proposed method can successfully classify 8 kinds of common liquid with high accuracy. The result of the experiment is explained and the limitations of the experiment are discussed. It can be drawn that the combination of FMCW millimeter wave radar and convolution neural network is a method with great potential for liquid classification. The advantages of real time, non-invasive and unilateral measurement can also be used for the detection of dangerous liquids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Secure performance comparison for NOMA: Reconfigurable intelligent surface or amplify-and-forward relay? Editorial Board Structural knowledge-driven meta-learning for task offloading in vehicular networks with integrated communications, sensing and computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1