基于光学偶极子力阱释放和捕获的空气微粒快速质量测定技术

G. Carlse, K. Borsos, H. Beica, T. Vacheresse, A. Pouliot, J. Pérez-García, A. Vorozcovs, B. Barron, S. Jackson, L. Marmet, A. Kumarakrishnan
{"title":"基于光学偶极子力阱释放和捕获的空气微粒快速质量测定技术","authors":"G. Carlse, K. Borsos, H. Beica, T. Vacheresse, A. Pouliot, J. Pérez-García, A. Vorozcovs, B. Barron, S. Jackson, L. Marmet, A. Kumarakrishnan","doi":"10.1103/physrevapplied.14.024017","DOIUrl":null,"url":null,"abstract":"We describe a new method for the rapid determination of the mass of particles confined in a free-space optical dipole-force trap. The technique relies on direct imaging of drop-and-restore experiments without the need for a vacuum environment. In these experiments, the trapping light is rapidly shuttered with an acousto-optic modulator causing the particle to be released from and subsequently recaptured by the trapping force. The trajectories of both the falls and restorations, imaged using a high-speed CMOS sensor, are combined to determine the particle mass. We corroborate these measurements using an analysis of position autocorrelation functions of the trapped particles. We report a statistical uncertainty of less than 2% for masses on the order of $5\\times10^{-14}$ kg using a data acquisition time of approximately 90 seconds.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Technique for Rapid Mass Determination of Airborne Microparticles Based on Release and Recapture from an Optical Dipole Force Trap\",\"authors\":\"G. Carlse, K. Borsos, H. Beica, T. Vacheresse, A. Pouliot, J. Pérez-García, A. Vorozcovs, B. Barron, S. Jackson, L. Marmet, A. Kumarakrishnan\",\"doi\":\"10.1103/physrevapplied.14.024017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new method for the rapid determination of the mass of particles confined in a free-space optical dipole-force trap. The technique relies on direct imaging of drop-and-restore experiments without the need for a vacuum environment. In these experiments, the trapping light is rapidly shuttered with an acousto-optic modulator causing the particle to be released from and subsequently recaptured by the trapping force. The trajectories of both the falls and restorations, imaged using a high-speed CMOS sensor, are combined to determine the particle mass. We corroborate these measurements using an analysis of position autocorrelation functions of the trapped particles. We report a statistical uncertainty of less than 2% for masses on the order of $5\\\\times10^{-14}$ kg using a data acquisition time of approximately 90 seconds.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.14.024017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevapplied.14.024017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们描述了一种快速测定自由空间光学偶极子力阱中粒子质量的新方法。该技术依赖于直接成像的跌落和恢复实验,而不需要真空环境。在这些实验中,用声光调制器迅速关闭捕获光,使粒子从捕获力中释放出来,随后被捕获力重新捕获。下落和恢复的轨迹,使用高速CMOS传感器成像,结合起来确定粒子质量。我们通过对捕获粒子的位置自相关函数的分析来证实这些测量结果。我们报告的统计不确定性小于2%,质量为$5\乘以10^{-14}$ kg,使用大约90秒的数据采集时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technique for Rapid Mass Determination of Airborne Microparticles Based on Release and Recapture from an Optical Dipole Force Trap
We describe a new method for the rapid determination of the mass of particles confined in a free-space optical dipole-force trap. The technique relies on direct imaging of drop-and-restore experiments without the need for a vacuum environment. In these experiments, the trapping light is rapidly shuttered with an acousto-optic modulator causing the particle to be released from and subsequently recaptured by the trapping force. The trajectories of both the falls and restorations, imaged using a high-speed CMOS sensor, are combined to determine the particle mass. We corroborate these measurements using an analysis of position autocorrelation functions of the trapped particles. We report a statistical uncertainty of less than 2% for masses on the order of $5\times10^{-14}$ kg using a data acquisition time of approximately 90 seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1