细菌纤维素基载酶复合水凝胶伤口愈合材料的制备及性能研究

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Bioactive and Compatible Polymers Pub Date : 2023-02-07 DOI:10.1177/08839115221143445
Meiling Shao, Zhan Shi, Chi Zhang, Zhongyi Li, B. Zhai
{"title":"细菌纤维素基载酶复合水凝胶伤口愈合材料的制备及性能研究","authors":"Meiling Shao, Zhan Shi, Chi Zhang, Zhongyi Li, B. Zhai","doi":"10.1177/08839115221143445","DOIUrl":null,"url":null,"abstract":"As a biosynthetic polymer, Bacterial cellulose (BC) has been largely used in biomedical and technological fields for the excellent biocompatibility and water holding capability. In this study, BC hydrogel were mass-produced from G. xylinus. A novel gel, BC nanocomposite (BC/NC) hydrogel, was prepared via in situ free radical aqueous polymerization from NIPAM in the presence of Clay was added as physical crosslinker. The physical and chemical properties were evaluated, and the results showed that the properties of the composite hydrogel were improved, for example, the Young’s modulus rose by nearly 30%, from 4.7 to 6.0 Mpa with the increasing of NIPAM. BC/NC-lys hydrogel were prepared by treating BC/NC hydrogel with Lysostaphin solution, and the cytocompatibility and antibacterial activities were assessed in vitro. The effects of composite hydrogel on wound healing were examined in rat skin models, the cure rate was up to 92.35% in the test group and only 78.83% in the control group after 14 days. The composite BC/NC3-lys hydrogel were developed in the hope of accelerating the wound healing process as well as decreasing the infection rate.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preparation and performance of bacterial cellulose-based enzyme-carrying composite hydrogels as wound healing material\",\"authors\":\"Meiling Shao, Zhan Shi, Chi Zhang, Zhongyi Li, B. Zhai\",\"doi\":\"10.1177/08839115221143445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a biosynthetic polymer, Bacterial cellulose (BC) has been largely used in biomedical and technological fields for the excellent biocompatibility and water holding capability. In this study, BC hydrogel were mass-produced from G. xylinus. A novel gel, BC nanocomposite (BC/NC) hydrogel, was prepared via in situ free radical aqueous polymerization from NIPAM in the presence of Clay was added as physical crosslinker. The physical and chemical properties were evaluated, and the results showed that the properties of the composite hydrogel were improved, for example, the Young’s modulus rose by nearly 30%, from 4.7 to 6.0 Mpa with the increasing of NIPAM. BC/NC-lys hydrogel were prepared by treating BC/NC hydrogel with Lysostaphin solution, and the cytocompatibility and antibacterial activities were assessed in vitro. The effects of composite hydrogel on wound healing were examined in rat skin models, the cure rate was up to 92.35% in the test group and only 78.83% in the control group after 14 days. The composite BC/NC3-lys hydrogel were developed in the hope of accelerating the wound healing process as well as decreasing the infection rate.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115221143445\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221143445","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

细菌纤维素作为一种生物合成聚合物,以其优异的生物相容性和保水性能在生物医学和技术领域得到了广泛的应用。本研究以木霉为原料,批量制备了BC水凝胶。采用原位自由基聚合法制备了BC纳米复合水凝胶(BC/NC),并添加了粘土作为物理交联剂。结果表明,随着NIPAM用量的增加,复合水凝胶的杨氏模量从4.7 Mpa提高到6.0 Mpa,提高了近30%。以溶葡萄球菌素溶液处理BC/NC水凝胶制备BC/NC- lyys水凝胶,并对其体外细胞相容性和抗菌活性进行了评价。在大鼠皮肤模型上观察复合水凝胶对创面愈合的影响,14 d后,试验组创面愈合率高达92.35%,对照组创面愈合率仅为78.83%。研究BC/ nc3 - lyys复合水凝胶,以期加速伤口愈合过程,降低感染率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and performance of bacterial cellulose-based enzyme-carrying composite hydrogels as wound healing material
As a biosynthetic polymer, Bacterial cellulose (BC) has been largely used in biomedical and technological fields for the excellent biocompatibility and water holding capability. In this study, BC hydrogel were mass-produced from G. xylinus. A novel gel, BC nanocomposite (BC/NC) hydrogel, was prepared via in situ free radical aqueous polymerization from NIPAM in the presence of Clay was added as physical crosslinker. The physical and chemical properties were evaluated, and the results showed that the properties of the composite hydrogel were improved, for example, the Young’s modulus rose by nearly 30%, from 4.7 to 6.0 Mpa with the increasing of NIPAM. BC/NC-lys hydrogel were prepared by treating BC/NC hydrogel with Lysostaphin solution, and the cytocompatibility and antibacterial activities were assessed in vitro. The effects of composite hydrogel on wound healing were examined in rat skin models, the cure rate was up to 92.35% in the test group and only 78.83% in the control group after 14 days. The composite BC/NC3-lys hydrogel were developed in the hope of accelerating the wound healing process as well as decreasing the infection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Textile waste-based biosensors for medical monitoring Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies Sport technology in combination with neural guidance channels loaded with Inula helenium extract for peripheral nervous system repair Dual drug release profiles of salicylate-based polymers and encapsulated chlorhexidine as potential periodontitis treatments Synthesis of pH-sensitive polymeric micelle drug carries for potential cancer chemotherapy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1