基于虚拟边界检测的两相陶瓷(HfB2-B4C)分割分析方法

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2019-04-11 DOI:10.5566/IAS.1992
Yuexing Han, Chuanbin Lai, Bing Wang, Tian-Yi Hu, Dong-Li Hu, Hui Gu
{"title":"基于虚拟边界检测的两相陶瓷(HfB2-B4C)分割分析方法","authors":"Yuexing Han, Chuanbin Lai, Bing Wang, Tian-Yi Hu, Dong-Li Hu, Hui Gu","doi":"10.5566/IAS.1992","DOIUrl":null,"url":null,"abstract":"Microstructure of a material stores the genesis of the material and shows various properties of the material. To efficiently analyse the microstructure of a material, the segmentation of different phases or constituents is an important step. However, in general, due to the microstructure’s complexity, most of segmentation is manually done by human experts. It is challenging to automatically segment the material phases and the microstructure. In this work, we propose a method which combines the the dilation operator, GLCM (gray-level co-occurrence matrix), Hough transform and DBSCAN (density-based spatial clustering of applications with noise) for phases segmentation in the examples of certain material of eutectic HfB2-B4C ceramics. In the segmented regions, the further analysis for the microstructural elements is done with DBSCAN. The experimental results show that the proposed method achieves 95.75% segmentation accuracy for segmenting phases and 86.64% correct classification rate for the microstructure in the segmented phases. These experimental results show that our method is effective for the difficult task of the both segmentation and classification of the microstructural characteristics.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SEGMENTATION AND ANALYSIS METHOD FOR TWO-PHASE CERAMIC (HfB2-B4C) BASED ON THE DETECTION OF VIRTUAL BOUNDARIES\",\"authors\":\"Yuexing Han, Chuanbin Lai, Bing Wang, Tian-Yi Hu, Dong-Li Hu, Hui Gu\",\"doi\":\"10.5566/IAS.1992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructure of a material stores the genesis of the material and shows various properties of the material. To efficiently analyse the microstructure of a material, the segmentation of different phases or constituents is an important step. However, in general, due to the microstructure’s complexity, most of segmentation is manually done by human experts. It is challenging to automatically segment the material phases and the microstructure. In this work, we propose a method which combines the the dilation operator, GLCM (gray-level co-occurrence matrix), Hough transform and DBSCAN (density-based spatial clustering of applications with noise) for phases segmentation in the examples of certain material of eutectic HfB2-B4C ceramics. In the segmented regions, the further analysis for the microstructural elements is done with DBSCAN. The experimental results show that the proposed method achieves 95.75% segmentation accuracy for segmenting phases and 86.64% correct classification rate for the microstructure in the segmented phases. These experimental results show that our method is effective for the difficult task of the both segmentation and classification of the microstructural characteristics.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/IAS.1992\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1992","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

材料的微观结构存储着材料的起源,显示着材料的各种性能。为了有效地分析材料的微观结构,不同相或成分的分割是一个重要步骤。然而,一般来说,由于微观结构的复杂性,大多数分割是由人类专家手工完成的。材料相和微观结构的自动分割是一个具有挑战性的问题。本文提出了一种结合膨胀算子、灰度共生矩阵(GLCM)、Hough变换和DBSCAN(含噪声的基于密度的空间聚类应用)的共晶HfB2-B4C陶瓷相分割方法。在分割区域,进一步分析微观结构元素是用DBSCAN完成的。实验结果表明,该方法对分割相的分割准确率达到95.75%,对分割相中微观结构的分类正确率达到86.64%。实验结果表明,该方法可以有效地解决微观结构特征的分割和分类难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEGMENTATION AND ANALYSIS METHOD FOR TWO-PHASE CERAMIC (HfB2-B4C) BASED ON THE DETECTION OF VIRTUAL BOUNDARIES
Microstructure of a material stores the genesis of the material and shows various properties of the material. To efficiently analyse the microstructure of a material, the segmentation of different phases or constituents is an important step. However, in general, due to the microstructure’s complexity, most of segmentation is manually done by human experts. It is challenging to automatically segment the material phases and the microstructure. In this work, we propose a method which combines the the dilation operator, GLCM (gray-level co-occurrence matrix), Hough transform and DBSCAN (density-based spatial clustering of applications with noise) for phases segmentation in the examples of certain material of eutectic HfB2-B4C ceramics. In the segmented regions, the further analysis for the microstructural elements is done with DBSCAN. The experimental results show that the proposed method achieves 95.75% segmentation accuracy for segmenting phases and 86.64% correct classification rate for the microstructure in the segmented phases. These experimental results show that our method is effective for the difficult task of the both segmentation and classification of the microstructural characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1