多层钢结构横向框架体系的分析与设计

IF 12.2 1区 工程技术 Q1 MECHANICS Applied Mechanics Reviews Pub Date : 2023-03-27 DOI:10.3390/applmech4020022
Husam Al Dughaishi, Jawad Al Lawati, M. Alosta, S. Mahmood, M. F. Al-Kazee, N. Yusoff, A. Milad
{"title":"多层钢结构横向框架体系的分析与设计","authors":"Husam Al Dughaishi, Jawad Al Lawati, M. Alosta, S. Mahmood, M. F. Al-Kazee, N. Yusoff, A. Milad","doi":"10.3390/applmech4020022","DOIUrl":null,"url":null,"abstract":"This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"22 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Design of Lateral Framing Systems for Multi-Story Steel Buildings\",\"authors\":\"Husam Al Dughaishi, Jawad Al Lawati, M. Alosta, S. Mahmood, M. F. Al-Kazee, N. Yusoff, A. Milad\",\"doi\":\"10.3390/applmech4020022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.\",\"PeriodicalId\":8048,\"journal\":{\"name\":\"Applied Mechanics Reviews\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/applmech4020022\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/applmech4020022","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是确定最适合多层建筑的结构体系,并分析其对横向荷载的响应。研究分析和比较了不同的结构体系,以确定最合适的方案。该研究旨在利用三种横向框架系统(弯矩、支撑和网格),以研究哪种系统需要最少的钢材来满足设计要求。因此,为了确定该系统与弯矩框架和支撑框架相比的估计钢材节约量,在平面上采用96 ' × 96 '的四层和八层建筑,并采用弯矩框架、支撑框架和网格框架结构系统。基于美国土木工程师学会(American Society of Civil Engineers, ASCE) 7-10,在设计中考虑荷载组合,并采用RAM结构分析对结构体系进行建模和分析。本研究插图的结果对于176 kips的风和122 kips的地震荷载、建筑物的横向位移(最低为0.045英寸)、楼层漂移、楼层刚度和每个结构系统的楼层剪力的分析是最优的。此外,在所有楼层中,网格系统也具有最小的剪切量,这表明它能够更好地管理侧向力。这些结果表明,网格结构体系是一种更有效的结构体系,可以推荐用于多层建筑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Design of Lateral Framing Systems for Multi-Story Steel Buildings
This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.20
自引率
0.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.
期刊最新文献
Experimental Investigation of Unidirectional Glass-Fiber-Reinforced Plastics under High Strain Rates A Simple and Effective Method to Evaluate Seismic Maximum Floor Velocities for Steel-Framed Structures with Supplementary Dampers Dynamic Analysis of a Timoshenko–Ehrenfest Single-Walled Carbon Nanotube in the Presence of Surface Effects: The Truncated Theory MechGPT, a Language-Based Strategy for Mechanics and Materials Modeling That Connects Knowledge Across Scales, Disciplines and Modalities Refined and Simplified Simulations for Steel–Concrete–Steel Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1