A. V. Desyatov, Khimki Russia Global Co Llc, M. Chaika, V. V. Besedin, E. V. Bulavina, A. V. Denisenko, N. A. Shibanov
{"title":"在活性炭基正极材料中引入LiNi1/3Mn1/3Co1/3O2添加剂提高锂离子超级电容器比能","authors":"A. V. Desyatov, Khimki Russia Global Co Llc, M. Chaika, V. V. Besedin, E. V. Bulavina, A. V. Denisenko, N. A. Shibanov","doi":"10.17277/amt.2020.02.pp.033-039","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the effect of the cathode material additive LiNi1/3Mn1/3Co1/3O2 (NMC111) on the capacity and specific energy of a hybrid lithium-ion supercapacitor (HLISC) with a positive electrode based on active carbon, a negative electrode based on graphite, and an auxiliary lithium electrode. The introduction of 35 % of the mass. NMC111 made it possible to increase the specific capacity of the storage device energy by ~ 77 % compared to a lithium-ion supercapacitor (LISC) with a cathode based on pure, non-doped active carbon. It was found that cycling at high current densities does not cause significant changes in the HLISC characteristics. This type of hybrid element proved to have two advantages. At low current densities, it exhibits charge-discharge properties of a lithium-ion battery with a high specific energy, and at high current densities, it exhibits the properties of a lithium-ion supercapacitor with a high specific power.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"36 1","pages":"033-039"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increasing of a Lithium-Ion Supercapacitor Specific Energy by Introducing LiNi1/3Mn1/3Co1/3O2 Additive into the Active Carbon-Based Cathode Material\",\"authors\":\"A. V. Desyatov, Khimki Russia Global Co Llc, M. Chaika, V. V. Besedin, E. V. Bulavina, A. V. Denisenko, N. A. Shibanov\",\"doi\":\"10.17277/amt.2020.02.pp.033-039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigated the effect of the cathode material additive LiNi1/3Mn1/3Co1/3O2 (NMC111) on the capacity and specific energy of a hybrid lithium-ion supercapacitor (HLISC) with a positive electrode based on active carbon, a negative electrode based on graphite, and an auxiliary lithium electrode. The introduction of 35 % of the mass. NMC111 made it possible to increase the specific capacity of the storage device energy by ~ 77 % compared to a lithium-ion supercapacitor (LISC) with a cathode based on pure, non-doped active carbon. It was found that cycling at high current densities does not cause significant changes in the HLISC characteristics. This type of hybrid element proved to have two advantages. At low current densities, it exhibits charge-discharge properties of a lithium-ion battery with a high specific energy, and at high current densities, it exhibits the properties of a lithium-ion supercapacitor with a high specific power.\",\"PeriodicalId\":13355,\"journal\":{\"name\":\"Image Journal of Advanced Materials and Technologies\",\"volume\":\"36 1\",\"pages\":\"033-039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Journal of Advanced Materials and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17277/amt.2020.02.pp.033-039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Journal of Advanced Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17277/amt.2020.02.pp.033-039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing of a Lithium-Ion Supercapacitor Specific Energy by Introducing LiNi1/3Mn1/3Co1/3O2 Additive into the Active Carbon-Based Cathode Material
In this paper, we investigated the effect of the cathode material additive LiNi1/3Mn1/3Co1/3O2 (NMC111) on the capacity and specific energy of a hybrid lithium-ion supercapacitor (HLISC) with a positive electrode based on active carbon, a negative electrode based on graphite, and an auxiliary lithium electrode. The introduction of 35 % of the mass. NMC111 made it possible to increase the specific capacity of the storage device energy by ~ 77 % compared to a lithium-ion supercapacitor (LISC) with a cathode based on pure, non-doped active carbon. It was found that cycling at high current densities does not cause significant changes in the HLISC characteristics. This type of hybrid element proved to have two advantages. At low current densities, it exhibits charge-discharge properties of a lithium-ion battery with a high specific energy, and at high current densities, it exhibits the properties of a lithium-ion supercapacitor with a high specific power.