就地查询引擎的矢量化

Panagiotis Sioulas, A. Ailamaki
{"title":"就地查询引擎的矢量化","authors":"Panagiotis Sioulas, A. Ailamaki","doi":"10.1145/2882903.2914829","DOIUrl":null,"url":null,"abstract":"Database systems serve a wide range of use cases efficiently, but require data to be loaded and adapted to the system's execution engine. This pre-processing step is a bottleneck to the analysis of the increasingly large and heterogeneous datasets. Therefore, numerous research efforts advocate for querying each dataset in situ,i.e., without pre-loading it in a DBMS. On the other hand, performing analysis over raw data entails numerous overheads because of the potentially inefficient data representations. In this paper, we investigate the effect of vector processing on raw data querying. We enhance the operators of a query engine to use SIMD operations. Specifically, we examine the effect of SIMD on two different cases: the scan operators that perform the CPU-intensive task of input parsing, and the part of the query pipeline that performs a selection and computes an aggregate. We show that a vectorized approach has a lot of potential to improve performance, which nevertheless comes with trade-offs.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vectorizing an In Situ Query Engine\",\"authors\":\"Panagiotis Sioulas, A. Ailamaki\",\"doi\":\"10.1145/2882903.2914829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Database systems serve a wide range of use cases efficiently, but require data to be loaded and adapted to the system's execution engine. This pre-processing step is a bottleneck to the analysis of the increasingly large and heterogeneous datasets. Therefore, numerous research efforts advocate for querying each dataset in situ,i.e., without pre-loading it in a DBMS. On the other hand, performing analysis over raw data entails numerous overheads because of the potentially inefficient data representations. In this paper, we investigate the effect of vector processing on raw data querying. We enhance the operators of a query engine to use SIMD operations. Specifically, we examine the effect of SIMD on two different cases: the scan operators that perform the CPU-intensive task of input parsing, and the part of the query pipeline that performs a selection and computes an aggregate. We show that a vectorized approach has a lot of potential to improve performance, which nevertheless comes with trade-offs.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2914829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据库系统有效地服务于广泛的用例,但需要加载数据并使其适应系统的执行引擎。这一预处理步骤是分析日益庞大和异构数据集的瓶颈。因此,许多研究工作提倡就地查询每个数据集,即。,而无需在DBMS中预加载它。另一方面,对原始数据执行分析会带来大量开销,因为可能存在低效的数据表示。本文研究了向量处理对原始数据查询的影响。我们增强了查询引擎的操作符,以使用SIMD操作。具体来说,我们将研究SIMD在两种不同情况下的影响:执行输入解析的cpu密集型任务的扫描操作符,以及执行选择和计算聚合的查询管道部分。我们展示了矢量化方法在提高性能方面有很大的潜力,然而这是有代价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vectorizing an In Situ Query Engine
Database systems serve a wide range of use cases efficiently, but require data to be loaded and adapted to the system's execution engine. This pre-processing step is a bottleneck to the analysis of the increasingly large and heterogeneous datasets. Therefore, numerous research efforts advocate for querying each dataset in situ,i.e., without pre-loading it in a DBMS. On the other hand, performing analysis over raw data entails numerous overheads because of the potentially inefficient data representations. In this paper, we investigate the effect of vector processing on raw data querying. We enhance the operators of a query engine to use SIMD operations. Specifically, we examine the effect of SIMD on two different cases: the scan operators that perform the CPU-intensive task of input parsing, and the part of the query pipeline that performs a selection and computes an aggregate. We show that a vectorized approach has a lot of potential to improve performance, which nevertheless comes with trade-offs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1