E. Capecci, Josafath Israel Espinosa Ramos, N. Mammone, N. Kasabov, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta, F. Morabito
{"title":"模拟缺席癫痫发作数据在neurocube不断发展的尖峰神经网络结构","authors":"E. Capecci, Josafath Israel Espinosa Ramos, N. Mammone, N. Kasabov, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta, F. Morabito","doi":"10.1109/IJCNN.2015.7280764","DOIUrl":null,"url":null,"abstract":"Epilepsy is the most diffuse brain disorder that can affect people's lives even on its early stage. In this paper, we used for the first time the spiking neural networks (SNN) framework called NeuCube for the analysis of electroencephalography (EEG) data recorded from a person affected by Absence Epileptic (AE), using permutation entropy (PE) features. Our results demonstrated that the methodology constitutes a valuable tool for the analysis and understanding of functional changes in the brain in term of its spiking activity and connectivity. Future applications of the model aim at personalised modelling of epileptic data for the analysis and the event prediction.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"31 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modelling Absence Epilepsy seizure data in the NeuCube evolving spiking neural network architecture\",\"authors\":\"E. Capecci, Josafath Israel Espinosa Ramos, N. Mammone, N. Kasabov, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta, F. Morabito\",\"doi\":\"10.1109/IJCNN.2015.7280764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is the most diffuse brain disorder that can affect people's lives even on its early stage. In this paper, we used for the first time the spiking neural networks (SNN) framework called NeuCube for the analysis of electroencephalography (EEG) data recorded from a person affected by Absence Epileptic (AE), using permutation entropy (PE) features. Our results demonstrated that the methodology constitutes a valuable tool for the analysis and understanding of functional changes in the brain in term of its spiking activity and connectivity. Future applications of the model aim at personalised modelling of epileptic data for the analysis and the event prediction.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"31 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling Absence Epilepsy seizure data in the NeuCube evolving spiking neural network architecture
Epilepsy is the most diffuse brain disorder that can affect people's lives even on its early stage. In this paper, we used for the first time the spiking neural networks (SNN) framework called NeuCube for the analysis of electroencephalography (EEG) data recorded from a person affected by Absence Epileptic (AE), using permutation entropy (PE) features. Our results demonstrated that the methodology constitutes a valuable tool for the analysis and understanding of functional changes in the brain in term of its spiking activity and connectivity. Future applications of the model aim at personalised modelling of epileptic data for the analysis and the event prediction.