模拟缺席癫痫发作数据在neurocube不断发展的尖峰神经网络结构

E. Capecci, Josafath Israel Espinosa Ramos, N. Mammone, N. Kasabov, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta, F. Morabito
{"title":"模拟缺席癫痫发作数据在neurocube不断发展的尖峰神经网络结构","authors":"E. Capecci, Josafath Israel Espinosa Ramos, N. Mammone, N. Kasabov, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta, F. Morabito","doi":"10.1109/IJCNN.2015.7280764","DOIUrl":null,"url":null,"abstract":"Epilepsy is the most diffuse brain disorder that can affect people's lives even on its early stage. In this paper, we used for the first time the spiking neural networks (SNN) framework called NeuCube for the analysis of electroencephalography (EEG) data recorded from a person affected by Absence Epileptic (AE), using permutation entropy (PE) features. Our results demonstrated that the methodology constitutes a valuable tool for the analysis and understanding of functional changes in the brain in term of its spiking activity and connectivity. Future applications of the model aim at personalised modelling of epileptic data for the analysis and the event prediction.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"31 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modelling Absence Epilepsy seizure data in the NeuCube evolving spiking neural network architecture\",\"authors\":\"E. Capecci, Josafath Israel Espinosa Ramos, N. Mammone, N. Kasabov, J. Duun-Henriksen, T. Kjaer, M. Campolo, F. L. Foresta, F. Morabito\",\"doi\":\"10.1109/IJCNN.2015.7280764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is the most diffuse brain disorder that can affect people's lives even on its early stage. In this paper, we used for the first time the spiking neural networks (SNN) framework called NeuCube for the analysis of electroencephalography (EEG) data recorded from a person affected by Absence Epileptic (AE), using permutation entropy (PE) features. Our results demonstrated that the methodology constitutes a valuable tool for the analysis and understanding of functional changes in the brain in term of its spiking activity and connectivity. Future applications of the model aim at personalised modelling of epileptic data for the analysis and the event prediction.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"31 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

癫痫是最具弥漫性的脑部疾病,即使在早期阶段也会影响人们的生活。在本文中,我们首次使用了称为neuube的峰值神经网络(SNN)框架,利用排列熵(PE)特征对癫痫缺失(AE)患者记录的脑电图(EEG)数据进行了分析。我们的结果表明,该方法构成了一个有价值的工具,用于分析和理解大脑在其尖峰活动和连接方面的功能变化。该模型的未来应用旨在对癫痫数据进行个性化建模,用于分析和事件预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling Absence Epilepsy seizure data in the NeuCube evolving spiking neural network architecture
Epilepsy is the most diffuse brain disorder that can affect people's lives even on its early stage. In this paper, we used for the first time the spiking neural networks (SNN) framework called NeuCube for the analysis of electroencephalography (EEG) data recorded from a person affected by Absence Epileptic (AE), using permutation entropy (PE) features. Our results demonstrated that the methodology constitutes a valuable tool for the analysis and understanding of functional changes in the brain in term of its spiking activity and connectivity. Future applications of the model aim at personalised modelling of epileptic data for the analysis and the event prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1