动态离心铸造后空位簇管的形成及金属性能的变化

Y. Tarasov, V. Kryachko, V. Novikov
{"title":"动态离心铸造后空位簇管的形成及金属性能的变化","authors":"Y. Tarasov, V. Kryachko, V. Novikov","doi":"10.11648/J.AJMP.20180706.11","DOIUrl":null,"url":null,"abstract":"Presents experimental results of Al and Pb metals crystallization carried out under high intensity plastic deformation (HIPD) [e′ = (102–104) sec-1] reaching the level of so called «solid-liquid» state in the new type of centrifugal casting device at rotor speeds of up to 2000 rpm. Using the method of atomic force microscopy (AFM), vacancy cluster tubes (VCT) with average diameters of 39 nm for Al and 25 nm for Pb have been detected in the crystallized volume of Al and Pb metals. Physical model of the formation of a new substructure within the metals in the form of vacancy cluster tubes, received in the process of high-intensive plastic deformation (HIPD) during the process of mass crystallization of Al and Pb melts, and, also the changes in the mechanical, magnetic and superconducting properties of the above metals, which followed this process. When crystallizing Al and Pb under high-intensive plastic deformation (HIPD) of e′ = (102–104) per second type, in high-speed centrifugal casting devices, specially selected modes of metal crystallization are being chosen and special conditions are being created to achieve the dimensional effect of dynamic (shift) re-crystallization. Shift deformation during centrifugal crystallization is caused primarily by a large incline of the temperature field from the periphery (relative to the cold wall of the rotor) to the molten central part of the rotor. The difference in the angular movement velocities of the already-frozen part of the metal (adjacent to the outer surface of the rotor wall) and the central part, where the metal still remains in the molten state, leads to a high-intensity deformation [e′ = (102–104) sec-1] of the crystallized metal melt solidified phase. Since the grain sizes at the crystallized phase initially comprise around tens of nano-meters (approximately crystal nucleation size), it becomes possible to achieve the dimensional effect of the dynamic re-crystallization of a «nanocrystalline» solidified metal at high shift of strain velocities. The «non-equilibrium vacancies» formed this way condense into vacancy clusters, which are formed in the centrifugal force field in the form of vacancy-shaped cluster tubes stretched out to the center of rotation of the rotor. The process undergoes conditions that are considerably different from the «equilibrium» conditions as compared to the ordinary metal crystallization from the melt. Such processes can lead to the formation of highly ordered non-equilibrium states characteristic of non-equilibrium open systems.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"66 1","pages":"194"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Vacancy Cluster Tubes Formation and Metal Properties Changes After Dynamic Centrifugal Casting\",\"authors\":\"Y. Tarasov, V. Kryachko, V. Novikov\",\"doi\":\"10.11648/J.AJMP.20180706.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents experimental results of Al and Pb metals crystallization carried out under high intensity plastic deformation (HIPD) [e′ = (102–104) sec-1] reaching the level of so called «solid-liquid» state in the new type of centrifugal casting device at rotor speeds of up to 2000 rpm. Using the method of atomic force microscopy (AFM), vacancy cluster tubes (VCT) with average diameters of 39 nm for Al and 25 nm for Pb have been detected in the crystallized volume of Al and Pb metals. Physical model of the formation of a new substructure within the metals in the form of vacancy cluster tubes, received in the process of high-intensive plastic deformation (HIPD) during the process of mass crystallization of Al and Pb melts, and, also the changes in the mechanical, magnetic and superconducting properties of the above metals, which followed this process. When crystallizing Al and Pb under high-intensive plastic deformation (HIPD) of e′ = (102–104) per second type, in high-speed centrifugal casting devices, specially selected modes of metal crystallization are being chosen and special conditions are being created to achieve the dimensional effect of dynamic (shift) re-crystallization. Shift deformation during centrifugal crystallization is caused primarily by a large incline of the temperature field from the periphery (relative to the cold wall of the rotor) to the molten central part of the rotor. The difference in the angular movement velocities of the already-frozen part of the metal (adjacent to the outer surface of the rotor wall) and the central part, where the metal still remains in the molten state, leads to a high-intensity deformation [e′ = (102–104) sec-1] of the crystallized metal melt solidified phase. Since the grain sizes at the crystallized phase initially comprise around tens of nano-meters (approximately crystal nucleation size), it becomes possible to achieve the dimensional effect of the dynamic re-crystallization of a «nanocrystalline» solidified metal at high shift of strain velocities. The «non-equilibrium vacancies» formed this way condense into vacancy clusters, which are formed in the centrifugal force field in the form of vacancy-shaped cluster tubes stretched out to the center of rotation of the rotor. The process undergoes conditions that are considerably different from the «equilibrium» conditions as compared to the ordinary metal crystallization from the melt. Such processes can lead to the formation of highly ordered non-equilibrium states characteristic of non-equilibrium open systems.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"66 1\",\"pages\":\"194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJMP.20180706.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJMP.20180706.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了在新型离心铸造装置中,在高达2000转/分的转速下,在高强度塑性变形(HIPD) [e ' =(102-104)秒-1]达到所谓“固-液”状态下进行铝、铅金属结晶的实验结果。利用原子力显微镜(AFM)方法,在Al和Pb金属的结晶体积中检测到平均直径为39 nm和25 nm的空位簇管(VCT)。得到了Al和Pb熔体在高强度塑性变形(HIPD)结晶过程中,金属内部以空位簇管形式形成新的子结构的物理模型,以及随之产生的金属的力学、磁性和超导性能的变化。在高速离心铸造装置中,在e′= (102-104)/ s型高强度塑性变形(HIPD)条件下结晶Al和Pb时,通过选择特殊的金属结晶方式和创造特殊条件,实现动态(移位)再结晶的尺寸效应。离心结晶过程中的移位变形主要是由温度场从外围(相对于转子的冷壁)向转子的熔融中心部分的大倾斜引起的。金属已冻结部分(靠近转子壁面外表面)与金属仍处于熔融状态的中心部分角速度的差异,导致结晶金属熔体凝固相发生高强度变形[e ' =(102-104)秒-1]。由于结晶相的晶粒尺寸最初约为数十纳米(约为晶体成核尺寸),因此在高应变速度位移下实现“纳米晶”固化金属的动态再结晶的尺寸效应成为可能。以这种方式形成的“非平衡空位”凝聚成空位团簇,这些空位团簇在离心力场中以延伸到转子旋转中心的空位形簇管的形式形成。与熔体中普通金属结晶相比,该过程所经历的条件与“平衡”条件有很大不同。这样的过程可以导致非平衡开放系统特征的高度有序非平衡状态的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Vacancy Cluster Tubes Formation and Metal Properties Changes After Dynamic Centrifugal Casting
Presents experimental results of Al and Pb metals crystallization carried out under high intensity plastic deformation (HIPD) [e′ = (102–104) sec-1] reaching the level of so called «solid-liquid» state in the new type of centrifugal casting device at rotor speeds of up to 2000 rpm. Using the method of atomic force microscopy (AFM), vacancy cluster tubes (VCT) with average diameters of 39 nm for Al and 25 nm for Pb have been detected in the crystallized volume of Al and Pb metals. Physical model of the formation of a new substructure within the metals in the form of vacancy cluster tubes, received in the process of high-intensive plastic deformation (HIPD) during the process of mass crystallization of Al and Pb melts, and, also the changes in the mechanical, magnetic and superconducting properties of the above metals, which followed this process. When crystallizing Al and Pb under high-intensive plastic deformation (HIPD) of e′ = (102–104) per second type, in high-speed centrifugal casting devices, specially selected modes of metal crystallization are being chosen and special conditions are being created to achieve the dimensional effect of dynamic (shift) re-crystallization. Shift deformation during centrifugal crystallization is caused primarily by a large incline of the temperature field from the periphery (relative to the cold wall of the rotor) to the molten central part of the rotor. The difference in the angular movement velocities of the already-frozen part of the metal (adjacent to the outer surface of the rotor wall) and the central part, where the metal still remains in the molten state, leads to a high-intensity deformation [e′ = (102–104) sec-1] of the crystallized metal melt solidified phase. Since the grain sizes at the crystallized phase initially comprise around tens of nano-meters (approximately crystal nucleation size), it becomes possible to achieve the dimensional effect of the dynamic re-crystallization of a «nanocrystalline» solidified metal at high shift of strain velocities. The «non-equilibrium vacancies» formed this way condense into vacancy clusters, which are formed in the centrifugal force field in the form of vacancy-shaped cluster tubes stretched out to the center of rotation of the rotor. The process undergoes conditions that are considerably different from the «equilibrium» conditions as compared to the ordinary metal crystallization from the melt. Such processes can lead to the formation of highly ordered non-equilibrium states characteristic of non-equilibrium open systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cutting–Edge Physics Driven Advancements in Medical Industry Characteristics of Two-Electron Atoms Examined Using the Hartree-Fock Approximation Difficulties Analytical Study of the Behavioral Trend of Klein-Gordon Equation in Different Potentials Strongly Coupled Fermions in Odd Dimensions and the Running Cut-off Λd Annular Axisymmetric Stagnation Flow of a Casson Fluid Through Porous Media in a Moving Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1