通过反应性水凝胶中DNA的机械张力感应病毒

Jaeoh Shin, Andrey G. Cherstvy, R. Metzler
{"title":"通过反应性水凝胶中DNA的机械张力感应病毒","authors":"Jaeoh Shin, Andrey G. Cherstvy, R. Metzler","doi":"10.1103/PhysRevX.4.021002","DOIUrl":null,"url":null,"abstract":"The rapid worldwide spread of severe viral infections, often involving novel modifications of viruses, poses major challenges to our health care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for a broad application in local health care centers, such tools should be relatively cheap and easy to use. Here we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of pre-stretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double-helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay for efficient and specific virus screening.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Sensing viruses by mechanical tension of DNA in responsive hydrogels\",\"authors\":\"Jaeoh Shin, Andrey G. Cherstvy, R. Metzler\",\"doi\":\"10.1103/PhysRevX.4.021002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid worldwide spread of severe viral infections, often involving novel modifications of viruses, poses major challenges to our health care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for a broad application in local health care centers, such tools should be relatively cheap and easy to use. Here we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of pre-stretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double-helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay for efficient and specific virus screening.\",\"PeriodicalId\":8447,\"journal\":{\"name\":\"arXiv: Biomolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevX.4.021002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.4.021002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

严重病毒感染在世界范围内的迅速传播,往往涉及病毒的新修饰,对我们的卫生保健系统提出了重大挑战。这意味着非常需要能够有效和专门诊断病毒的工具。为了在当地卫生保健中心广泛应用,这些工具应该相对便宜且易于使用。在这里,我们讨论了基于在病毒与DNA结合时在一束预拉伸DNA分子中诱导机械应力的宏观检测病毒的生物物理潜力。我们发现,DNA与带电病毒表面的亲和力诱导了双螺旋结构的局部熔化,形成了两条单链DNA。这个过程对DNA链产生机械应力,导致DNA整体收缩。我们的研究结果表明,当这样的DNA束被纳入一个支持基质,如反应性水凝胶时,病毒的存在确实可能导致基质发生重大的宏观机械变形。我们讨论了这种效应的生物物理基础,并描述了相关DNA熔化转变的物理性质。特别地,我们揭示了系统相关物理参数之间的几个标度关系。我们推广这种基于dna的检测方法,用于高效和特异性的病毒筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing viruses by mechanical tension of DNA in responsive hydrogels
The rapid worldwide spread of severe viral infections, often involving novel modifications of viruses, poses major challenges to our health care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for a broad application in local health care centers, such tools should be relatively cheap and easy to use. Here we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of pre-stretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double-helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay for efficient and specific virus screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Establishment of a Diagnostic Model to Distinguish Coronavirus Disease 2019 From Influenza a Based on Laboratory Findings Molecular dynamics studies of interactions between Arg9(nona-arginine) and a DOPC/DOPG(4:1) membrane In silico comparison of spike protein-ACE2 binding affinities across species; significance for the possible origin of the SARS-CoV-2 virus Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection Old Drugs for Newly Emerging Viral Disease, COVID-19: Bioinformatic Prospective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1