笔记本环境下轨迹可视化的现状

Q3 Social Sciences GI_Forum Pub Date : 2023-01-01 DOI:10.1553/giscience2022_02_s73
A. Graser
{"title":"笔记本环境下轨迹可视化的现状","authors":"A. Graser","doi":"10.1553/giscience2022_02_s73","DOIUrl":null,"url":null,"abstract":"Gaining insights from trajectory datasets is a challenging task that requires suitable visual data representations. There is a considerable gap between the state-of-the-art cartographic techniques presented in the literature and currently available spatial data science toolboxes. This review paper presents the current state of geospatial visualization tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The shortcomings identified provide pointers for further scientific software development, as well as a reference for data scientists in choosing the best-fitting tool for a specific job.","PeriodicalId":29645,"journal":{"name":"GI_Forum","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The State of Trajectory Visualization in Notebook Environments\",\"authors\":\"A. Graser\",\"doi\":\"10.1553/giscience2022_02_s73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaining insights from trajectory datasets is a challenging task that requires suitable visual data representations. There is a considerable gap between the state-of-the-art cartographic techniques presented in the literature and currently available spatial data science toolboxes. This review paper presents the current state of geospatial visualization tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The shortcomings identified provide pointers for further scientific software development, as well as a reference for data scientists in choosing the best-fitting tool for a specific job.\",\"PeriodicalId\":29645,\"journal\":{\"name\":\"GI_Forum\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GI_Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/giscience2022_02_s73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI_Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/giscience2022_02_s73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The State of Trajectory Visualization in Notebook Environments
Gaining insights from trajectory datasets is a challenging task that requires suitable visual data representations. There is a considerable gap between the state-of-the-art cartographic techniques presented in the literature and currently available spatial data science toolboxes. This review paper presents the current state of geospatial visualization tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The shortcomings identified provide pointers for further scientific software development, as well as a reference for data scientists in choosing the best-fitting tool for a specific job.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GI_Forum
GI_Forum Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
1.10
自引率
0.00%
发文量
9
审稿时长
23 weeks
期刊最新文献
Above-Ground Forest Biomass Estimation using Multispectral LiDAR Data in a Multilayered Coniferous Forest The State of Trajectory Visualization in Notebook Environments Development of a Standardized, Interdisciplinary Approach for Evaluating the Impact of Infrastructural Interventions on Sustainable Mobility A Comparative Study of Geocoder Performance on Unstructured Tweet Locations Application of Object-Based Image Analysis for Detecting and Differentiating between Shallow Landslides and Debris Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1