通过智能数据平台解决存储库挖掘研究的外部有效性问题

Fabian Trautsch, S. Herbold, Philip Makedonski, J. Grabowski
{"title":"通过智能数据平台解决存储库挖掘研究的外部有效性问题","authors":"Fabian Trautsch, S. Herbold, Philip Makedonski, J. Grabowski","doi":"10.1145/2901739.2901753","DOIUrl":null,"url":null,"abstract":"Research in software repository mining has grown considerably the last decade. Due to the data-driven nature of this venue of investigation, we identified several problems within the current state-of-the-art that pose a threat to the external validity of results. The heavy re-use of data sets in many studies may invalidate the results in case problems with the data itself are identified. Moreover, for many studies data and/or the implementations are not available, which hinders a replication of the results and, thereby, decreases the comparability between studies. Even if all information about the studies is available, the diversity of the used tooling can make their replication even then very hard. Within this paper, we discuss a potential solution to these problems through a cloud-based platform that integrates data collection and analytics. We created the prototype SmartSHARK that implements our approach. Using SmartSHARK, we collected data from several projects and created different analytic examples. Within this article, we present SmartSHARK and discuss our experiences regarding the use of SmartSHARK and the mentioned problems.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"36 1","pages":"97-108"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Adressing Problems with External Validity of Repository Mining Studies Through a Smart Data Platform\",\"authors\":\"Fabian Trautsch, S. Herbold, Philip Makedonski, J. Grabowski\",\"doi\":\"10.1145/2901739.2901753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research in software repository mining has grown considerably the last decade. Due to the data-driven nature of this venue of investigation, we identified several problems within the current state-of-the-art that pose a threat to the external validity of results. The heavy re-use of data sets in many studies may invalidate the results in case problems with the data itself are identified. Moreover, for many studies data and/or the implementations are not available, which hinders a replication of the results and, thereby, decreases the comparability between studies. Even if all information about the studies is available, the diversity of the used tooling can make their replication even then very hard. Within this paper, we discuss a potential solution to these problems through a cloud-based platform that integrates data collection and analytics. We created the prototype SmartSHARK that implements our approach. Using SmartSHARK, we collected data from several projects and created different analytic examples. Within this article, we present SmartSHARK and discuss our experiences regarding the use of SmartSHARK and the mentioned problems.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"36 1\",\"pages\":\"97-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901739.2901753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2901753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

软件存储库挖掘的研究在过去十年中有了长足的发展。由于该调查地点的数据驱动性质,我们确定了当前最先进技术中的几个问题,这些问题对结果的外部有效性构成威胁。在许多研究中,数据集的大量重复使用可能会在数据本身存在问题的情况下使结果无效。此外,许多研究的数据和/或实施是不可获得的,这阻碍了结果的复制,从而降低了研究之间的可比性。即使关于研究的所有信息都是可用的,所用工具的多样性也会使它们的复制变得非常困难。在本文中,我们讨论了通过集成数据收集和分析的基于云的平台来解决这些问题的潜在解决方案。我们创建了原型SmartSHARK来实现我们的方法。使用SmartSHARK,我们从几个项目中收集数据并创建不同的分析示例。在本文中,我们介绍了SmartSHARK,并讨论了我们使用SmartSHARK的经验和所提到的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adressing Problems with External Validity of Repository Mining Studies Through a Smart Data Platform
Research in software repository mining has grown considerably the last decade. Due to the data-driven nature of this venue of investigation, we identified several problems within the current state-of-the-art that pose a threat to the external validity of results. The heavy re-use of data sets in many studies may invalidate the results in case problems with the data itself are identified. Moreover, for many studies data and/or the implementations are not available, which hinders a replication of the results and, thereby, decreases the comparability between studies. Even if all information about the studies is available, the diversity of the used tooling can make their replication even then very hard. Within this paper, we discuss a potential solution to these problems through a cloud-based platform that integrates data collection and analytics. We created the prototype SmartSHARK that implements our approach. Using SmartSHARK, we collected data from several projects and created different analytic examples. Within this article, we present SmartSHARK and discuss our experiences regarding the use of SmartSHARK and the mentioned problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1