{"title":"利用脑电图信号和卷积神经网络对自闭症谱系障碍进行自动分类","authors":"Qaysar Mohi ud Din, A. Jayanthy","doi":"10.4015/s101623722250020x","DOIUrl":null,"url":null,"abstract":"Children suffering from Autism Spectrum Disorder (ASD) have impaired social communication, interaction and restricted and repetitive behaviors. ASD is caused by abnormal brain developments which give rise to the behavioral characteristics associated with ASD. The clinical diagnosis of ASD is performed on the basis of behavioral assessment and it causes a time delay in early intervention, as there is a time gap between abnormal brain developments and associated behavioral characteristics. Electroencephalography (EEG) is a technique which measures the electrical activity produced by the brain and it has been used to detect several neurological disorders. Studies have shown that there is a variation in the EEG signals of a normal subject and EEG signals of ASD subjects. In this study, we obtained scalograms of EEG signals by using Continuous Wavelet Transform (CWT). Pre-trained deep Convolutional Neural Networks (CNNs) such as GoogLeNet, AlexNet, MobileNet and SqueezeNet were used for extracting the features from scalograms and classification of obtained scalograms from EEG signals of normal and ASD subjects. We also used Support Vector Machine (SVM) algorithm and Relevance Vector Machine (RVM) for classification of the features extracted by the deep CNNs. The GoogLeNet, AlexNet, MobileNet and SqueezeNet deep CNNs achieved a validation accuracy of 75%, 75.84%, 79.45% and 82.98% in classifying the scalograms generated from EEG signals. The SVM achieved an accuracy of 71.6%, 74.76%, 70.70% and 81.47% using GoogleNet, Mobilenet, AlexNet and SqueezeNet for scalogram feature extraction. The RVM achieved an accuracy of 65.5%, 69.9%, 65.3% and 72.59% when used for classification using the features generated from GoogLeNet, AlexNet, MobileNet and SqueezeNet.The SqueezeNet deep CNN performed better than GoogLeNet, AlexNet and MobileNet for classification of the EEG scalograms. The feature extraction using SqueezeNet also resulted in better classification accuracy obtained by SVM and RVM. The results indicate that pre-trained models can be used for classifying the ASD using scalograms of the EEG signals.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AUTOMATED CLASSIFICATION OF AUTISM SPECTRUM DISORDER USING EEG SIGNALS AND CONVOLUTIONAL NEURAL NETWORKS\",\"authors\":\"Qaysar Mohi ud Din, A. Jayanthy\",\"doi\":\"10.4015/s101623722250020x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Children suffering from Autism Spectrum Disorder (ASD) have impaired social communication, interaction and restricted and repetitive behaviors. ASD is caused by abnormal brain developments which give rise to the behavioral characteristics associated with ASD. The clinical diagnosis of ASD is performed on the basis of behavioral assessment and it causes a time delay in early intervention, as there is a time gap between abnormal brain developments and associated behavioral characteristics. Electroencephalography (EEG) is a technique which measures the electrical activity produced by the brain and it has been used to detect several neurological disorders. Studies have shown that there is a variation in the EEG signals of a normal subject and EEG signals of ASD subjects. In this study, we obtained scalograms of EEG signals by using Continuous Wavelet Transform (CWT). Pre-trained deep Convolutional Neural Networks (CNNs) such as GoogLeNet, AlexNet, MobileNet and SqueezeNet were used for extracting the features from scalograms and classification of obtained scalograms from EEG signals of normal and ASD subjects. We also used Support Vector Machine (SVM) algorithm and Relevance Vector Machine (RVM) for classification of the features extracted by the deep CNNs. The GoogLeNet, AlexNet, MobileNet and SqueezeNet deep CNNs achieved a validation accuracy of 75%, 75.84%, 79.45% and 82.98% in classifying the scalograms generated from EEG signals. The SVM achieved an accuracy of 71.6%, 74.76%, 70.70% and 81.47% using GoogleNet, Mobilenet, AlexNet and SqueezeNet for scalogram feature extraction. The RVM achieved an accuracy of 65.5%, 69.9%, 65.3% and 72.59% when used for classification using the features generated from GoogLeNet, AlexNet, MobileNet and SqueezeNet.The SqueezeNet deep CNN performed better than GoogLeNet, AlexNet and MobileNet for classification of the EEG scalograms. The feature extraction using SqueezeNet also resulted in better classification accuracy obtained by SVM and RVM. The results indicate that pre-trained models can be used for classifying the ASD using scalograms of the EEG signals.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s101623722250020x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s101623722250020x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
AUTOMATED CLASSIFICATION OF AUTISM SPECTRUM DISORDER USING EEG SIGNALS AND CONVOLUTIONAL NEURAL NETWORKS
Children suffering from Autism Spectrum Disorder (ASD) have impaired social communication, interaction and restricted and repetitive behaviors. ASD is caused by abnormal brain developments which give rise to the behavioral characteristics associated with ASD. The clinical diagnosis of ASD is performed on the basis of behavioral assessment and it causes a time delay in early intervention, as there is a time gap between abnormal brain developments and associated behavioral characteristics. Electroencephalography (EEG) is a technique which measures the electrical activity produced by the brain and it has been used to detect several neurological disorders. Studies have shown that there is a variation in the EEG signals of a normal subject and EEG signals of ASD subjects. In this study, we obtained scalograms of EEG signals by using Continuous Wavelet Transform (CWT). Pre-trained deep Convolutional Neural Networks (CNNs) such as GoogLeNet, AlexNet, MobileNet and SqueezeNet were used for extracting the features from scalograms and classification of obtained scalograms from EEG signals of normal and ASD subjects. We also used Support Vector Machine (SVM) algorithm and Relevance Vector Machine (RVM) for classification of the features extracted by the deep CNNs. The GoogLeNet, AlexNet, MobileNet and SqueezeNet deep CNNs achieved a validation accuracy of 75%, 75.84%, 79.45% and 82.98% in classifying the scalograms generated from EEG signals. The SVM achieved an accuracy of 71.6%, 74.76%, 70.70% and 81.47% using GoogleNet, Mobilenet, AlexNet and SqueezeNet for scalogram feature extraction. The RVM achieved an accuracy of 65.5%, 69.9%, 65.3% and 72.59% when used for classification using the features generated from GoogLeNet, AlexNet, MobileNet and SqueezeNet.The SqueezeNet deep CNN performed better than GoogLeNet, AlexNet and MobileNet for classification of the EEG scalograms. The feature extraction using SqueezeNet also resulted in better classification accuracy obtained by SVM and RVM. The results indicate that pre-trained models can be used for classifying the ASD using scalograms of the EEG signals.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.