{"title":"面向密集视觉语义嵌入的分层多模态LSTM","authors":"Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, G. Hua","doi":"10.1109/ICCV.2017.208","DOIUrl":null,"url":null,"abstract":"We address the problem of dense visual-semantic embedding that maps not only full sentences and whole images but also phrases within sentences and salient regions within images into a multimodal embedding space. Such dense embeddings, when applied to the task of image captioning, enable us to produce several region-oriented and detailed phrases rather than just an overview sentence to describe an image. Specifically, we present a hierarchical structured recurrent neural network (RNN), namely Hierarchical Multimodal LSTM (HM-LSTM). Compared with chain structured RNN, our proposed model exploits the hierarchical relations between sentences and phrases, and between whole images and image regions, to jointly establish their representations. Without the need of any supervised labels, our proposed model automatically learns the fine-grained correspondences between phrases and image regions towards the dense embedding. Extensive experiments on several datasets validate the efficacy of our method, which compares favorably with the state-of-the-art methods.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"15 1","pages":"1899-1907"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"139","resultStr":"{\"title\":\"Hierarchical Multimodal LSTM for Dense Visual-Semantic Embedding\",\"authors\":\"Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, G. Hua\",\"doi\":\"10.1109/ICCV.2017.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of dense visual-semantic embedding that maps not only full sentences and whole images but also phrases within sentences and salient regions within images into a multimodal embedding space. Such dense embeddings, when applied to the task of image captioning, enable us to produce several region-oriented and detailed phrases rather than just an overview sentence to describe an image. Specifically, we present a hierarchical structured recurrent neural network (RNN), namely Hierarchical Multimodal LSTM (HM-LSTM). Compared with chain structured RNN, our proposed model exploits the hierarchical relations between sentences and phrases, and between whole images and image regions, to jointly establish their representations. Without the need of any supervised labels, our proposed model automatically learns the fine-grained correspondences between phrases and image regions towards the dense embedding. Extensive experiments on several datasets validate the efficacy of our method, which compares favorably with the state-of-the-art methods.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"15 1\",\"pages\":\"1899-1907\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"139\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Multimodal LSTM for Dense Visual-Semantic Embedding
We address the problem of dense visual-semantic embedding that maps not only full sentences and whole images but also phrases within sentences and salient regions within images into a multimodal embedding space. Such dense embeddings, when applied to the task of image captioning, enable us to produce several region-oriented and detailed phrases rather than just an overview sentence to describe an image. Specifically, we present a hierarchical structured recurrent neural network (RNN), namely Hierarchical Multimodal LSTM (HM-LSTM). Compared with chain structured RNN, our proposed model exploits the hierarchical relations between sentences and phrases, and between whole images and image regions, to jointly establish their representations. Without the need of any supervised labels, our proposed model automatically learns the fine-grained correspondences between phrases and image regions towards the dense embedding. Extensive experiments on several datasets validate the efficacy of our method, which compares favorably with the state-of-the-art methods.