用探地雷达评价建筑材料的含水量和压实度

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI:10.2113/JEEG19-035
H. R. Roodposhti, M. Hafizi, M. Kermani
{"title":"用探地雷达评价建筑材料的含水量和压实度","authors":"H. R. Roodposhti, M. Hafizi, M. Kermani","doi":"10.2113/JEEG19-035","DOIUrl":null,"url":null,"abstract":"With the aid of ground penetrating radar (GPR), it is possible to evaluate physical properties of a constructed base layer in engineered structures (pavement, land consolidation projects, etc.) non-destructively, quickly, and accurately. High spatial variations of subsurface water content and deficient compaction can lead to unexpected damage and structural instability. In this research, we established a relationship between the dielectric constant, water content, and compaction, whereby, an interactive relationship between these parameters is presented. To achieve this, large-scale laboratory experiments were carried out on construction materials to simulate field conditions. According to USCS, the tested soil type was GW-GM (type E base layer according to Iran's highway specifications code). Furthermore, water content and compaction were changed between 4% -12.9% and 84.7% -94.9%, respectively. The travel-times in each test, including three profiles with more than 210 traces, are measured automatically. Additionally, the calculated dielectric constants were compared with the Topp and Roth equations. R-square and RMS error of the final interactive equation between dielectric constant and water content-compaction were 0.95 and 0.41, respectively. Moreover, the sensitivity analysis of the proposed interactive equation shows that changes in water content of soil have greater impact on dielectric constant than soil compaction changes. The data also indicate the importance of considering the compaction changes of soil to reduce the error in dielectric constant estimation.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ground Penetrating Radar for Water Content and Compaction Evaluation: A Laboratory Test on Construction Material\",\"authors\":\"H. R. Roodposhti, M. Hafizi, M. Kermani\",\"doi\":\"10.2113/JEEG19-035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the aid of ground penetrating radar (GPR), it is possible to evaluate physical properties of a constructed base layer in engineered structures (pavement, land consolidation projects, etc.) non-destructively, quickly, and accurately. High spatial variations of subsurface water content and deficient compaction can lead to unexpected damage and structural instability. In this research, we established a relationship between the dielectric constant, water content, and compaction, whereby, an interactive relationship between these parameters is presented. To achieve this, large-scale laboratory experiments were carried out on construction materials to simulate field conditions. According to USCS, the tested soil type was GW-GM (type E base layer according to Iran's highway specifications code). Furthermore, water content and compaction were changed between 4% -12.9% and 84.7% -94.9%, respectively. The travel-times in each test, including three profiles with more than 210 traces, are measured automatically. Additionally, the calculated dielectric constants were compared with the Topp and Roth equations. R-square and RMS error of the final interactive equation between dielectric constant and water content-compaction were 0.95 and 0.41, respectively. Moreover, the sensitivity analysis of the proposed interactive equation shows that changes in water content of soil have greater impact on dielectric constant than soil compaction changes. The data also indicate the importance of considering the compaction changes of soil to reduce the error in dielectric constant estimation.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/JEEG19-035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/JEEG19-035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

摘要

在探地雷达(GPR)的帮助下,可以无损、快速、准确地评估工程结构(路面、土地整理工程等)中施工基层的物理性质。地下含水率的空间变化和压实不足会导致意想不到的破坏和结构不稳定。在本研究中,我们建立了介电常数,含水量和压实度之间的关系,从而提出了这些参数之间的交互关系。为了实现这一点,对建筑材料进行了大规模的实验室实验,以模拟现场条件。根据USCS,测试土壤类型为GW-GM(根据伊朗公路规范代码,E型基础层)。含水量和压实度变化范围分别为4% ~ 12.9%和84.7% ~ 94.9%。每个测试的行程时间,包括三个超过210走线的剖面,都是自动测量的。此外,还将计算得到的介电常数与Topp和Roth方程进行了比较。最终介电常数与含水量-压实作用方程的r平方和均方根误差分别为0.95和0.41。此外,本文提出的相互作用方程的敏感性分析表明,土壤含水量的变化对介电常数的影响大于土壤压实度的变化。数据还表明考虑土壤压实变化对减小介电常数估计误差的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ground Penetrating Radar for Water Content and Compaction Evaluation: A Laboratory Test on Construction Material
With the aid of ground penetrating radar (GPR), it is possible to evaluate physical properties of a constructed base layer in engineered structures (pavement, land consolidation projects, etc.) non-destructively, quickly, and accurately. High spatial variations of subsurface water content and deficient compaction can lead to unexpected damage and structural instability. In this research, we established a relationship between the dielectric constant, water content, and compaction, whereby, an interactive relationship between these parameters is presented. To achieve this, large-scale laboratory experiments were carried out on construction materials to simulate field conditions. According to USCS, the tested soil type was GW-GM (type E base layer according to Iran's highway specifications code). Furthermore, water content and compaction were changed between 4% -12.9% and 84.7% -94.9%, respectively. The travel-times in each test, including three profiles with more than 210 traces, are measured automatically. Additionally, the calculated dielectric constants were compared with the Topp and Roth equations. R-square and RMS error of the final interactive equation between dielectric constant and water content-compaction were 0.95 and 0.41, respectively. Moreover, the sensitivity analysis of the proposed interactive equation shows that changes in water content of soil have greater impact on dielectric constant than soil compaction changes. The data also indicate the importance of considering the compaction changes of soil to reduce the error in dielectric constant estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
期刊最新文献
Applications and Analytical Methods of Ground Penetrating Radar for Soil Characterization in a Silvopastoral System Introduction to the Journal of Environmental and Engineering Geophysics Special Issue on the Application of Proximal and Remote Sensing Technologies to Soil Investigations Integrated Agrogeophysical Approach for Investigating Soil Pipes in Agricultural Fields Automated Segmentation Framework for Asphalt Layer Thickness from GPR Data Using a Cascaded k-Means - DBSCAN Algorithm Continuous Automatic Estimation of Volumetric Water Content Profile During Infiltration Using Sparse Multi-Offset GPR Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1