{"title":"玻色-爱因斯坦凝聚二元混合物中大质量点涡的动力学","authors":"A. Richaud, V. Penna, A. Fetter","doi":"10.1103/PHYSREVA.103.023311","DOIUrl":null,"url":null,"abstract":"We study the massive point-vortex model introduced in Ref. [Phys. Rev. A 101, 013630 (2020)], which describes two-dimensional point vortices of one species that have small cores of a different species. We derive the relevant Lagrangian itself, based on the time-dependent variational method with a two-component Gross-Pitiavskii (GP) trial function. The resulting Lagrangian resembles that of charged particles in a static electromagnetic field, where the canonical momentum includes an electromagnetic term. The simplest example is a single vortex with a rigid circular boundary, where a massless vortex can only precess uniformly. In contrast, the presence of a sufficiently large filled vortex core renders such precession unstable. A small core mass can also lead to small radial oscillations, which are, in turn, clear evidence of the associated inertial effect. Detailed numerical analysis of coupled two-component GP equations with a single vortex and small second-component core confirms the presence of such radial oscillations, implying that this more realistic GP vortex also acts as if it has a small massive core.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Dynamics of massive point vortices in a binary mixture of Bose-Einstein condensates\",\"authors\":\"A. Richaud, V. Penna, A. Fetter\",\"doi\":\"10.1103/PHYSREVA.103.023311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the massive point-vortex model introduced in Ref. [Phys. Rev. A 101, 013630 (2020)], which describes two-dimensional point vortices of one species that have small cores of a different species. We derive the relevant Lagrangian itself, based on the time-dependent variational method with a two-component Gross-Pitiavskii (GP) trial function. The resulting Lagrangian resembles that of charged particles in a static electromagnetic field, where the canonical momentum includes an electromagnetic term. The simplest example is a single vortex with a rigid circular boundary, where a massless vortex can only precess uniformly. In contrast, the presence of a sufficiently large filled vortex core renders such precession unstable. A small core mass can also lead to small radial oscillations, which are, in turn, clear evidence of the associated inertial effect. Detailed numerical analysis of coupled two-component GP equations with a single vortex and small second-component core confirms the presence of such radial oscillations, implying that this more realistic GP vortex also acts as if it has a small massive core.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVA.103.023311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.023311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
摘要
本文研究了参考文献[Phys]中引入的大质量点涡模型。Rev. A 101, 013630(2020)],它描述了一个物种的二维点涡,它具有不同物种的小核心。利用双分量Gross-Pitiavskii (GP)试函数,基于时变分方法推导出相关的拉格朗日量。由此得到的拉格朗日量类似于静态电磁场中带电粒子的拉格朗日量,其中正则动量包含一个电磁项。最简单的例子是具有刚性圆形边界的单个涡,其中无质量涡只能均匀进动。相反,一个足够大的充满涡旋核心的存在使这种进动不稳定。一个小的核心质量也可以导致小的径向振荡,这反过来是相关惯性效应的明确证据。对具有单涡旋和小第二分量核心的耦合双分量GP方程的详细数值分析证实了这种径向振荡的存在,这意味着这个更真实的GP涡旋也表现得好像它有一个小的大质量核心。
Dynamics of massive point vortices in a binary mixture of Bose-Einstein condensates
We study the massive point-vortex model introduced in Ref. [Phys. Rev. A 101, 013630 (2020)], which describes two-dimensional point vortices of one species that have small cores of a different species. We derive the relevant Lagrangian itself, based on the time-dependent variational method with a two-component Gross-Pitiavskii (GP) trial function. The resulting Lagrangian resembles that of charged particles in a static electromagnetic field, where the canonical momentum includes an electromagnetic term. The simplest example is a single vortex with a rigid circular boundary, where a massless vortex can only precess uniformly. In contrast, the presence of a sufficiently large filled vortex core renders such precession unstable. A small core mass can also lead to small radial oscillations, which are, in turn, clear evidence of the associated inertial effect. Detailed numerical analysis of coupled two-component GP equations with a single vortex and small second-component core confirms the presence of such radial oscillations, implying that this more realistic GP vortex also acts as if it has a small massive core.