频谱矩阵的收缩估计:一种以脑电图分析为中心的方法

D. Schneider-Luftman
{"title":"频谱矩阵的收缩估计:一种以脑电图分析为中心的方法","authors":"D. Schneider-Luftman","doi":"10.1109/DSP-SPE.2015.7369575","DOIUrl":null,"url":null,"abstract":"In the analysis of Electroencephalograms (EEG), notably in their graphical modeling, the estimation of the spectral matrix and associated variables is of central importance. Often, when adjusting for the bandwidth of the spectral matrix estimate, singularity issues arise and information derived from the inverse spectral matrix is intractable. This requires the use of regularization methods, which have proven very popular in recent research. However, regularisation can be suboptimal for understanding connections within multichannel data and building graphical models. We propose a protocol that addresses this issue and that is specifically designed for spectral matrices of EEG data. It aims at maximising information retention for edge estimation in a graph, and unlike any existing regularisation method it solely relies on available data even at a conceptual level.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"4 1","pages":"331-336"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrinkage estimation of spectral matrices: A EEG analysis centered approach\",\"authors\":\"D. Schneider-Luftman\",\"doi\":\"10.1109/DSP-SPE.2015.7369575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of Electroencephalograms (EEG), notably in their graphical modeling, the estimation of the spectral matrix and associated variables is of central importance. Often, when adjusting for the bandwidth of the spectral matrix estimate, singularity issues arise and information derived from the inverse spectral matrix is intractable. This requires the use of regularization methods, which have proven very popular in recent research. However, regularisation can be suboptimal for understanding connections within multichannel data and building graphical models. We propose a protocol that addresses this issue and that is specifically designed for spectral matrices of EEG data. It aims at maximising information retention for edge estimation in a graph, and unlike any existing regularisation method it solely relies on available data even at a conceptual level.\",\"PeriodicalId\":91992,\"journal\":{\"name\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"volume\":\"4 1\",\"pages\":\"331-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP-SPE.2015.7369575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在脑电图(EEG)的分析中,特别是在其图形建模中,谱矩阵和相关变量的估计是至关重要的。通常,在调整谱矩阵估计的带宽时,会出现奇异性问题,并且从逆谱矩阵中获得的信息是难以处理的。这需要使用正则化方法,这在最近的研究中被证明是非常流行的。然而,对于理解多通道数据中的连接和构建图形模型来说,正则化可能不是最优的。我们提出了一个解决这个问题的协议,它是专门为EEG数据的频谱矩阵设计的。它旨在最大化图中边缘估计的信息保留,并且与任何现有的正则化方法不同,它甚至在概念层面上仅依赖于可用数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shrinkage estimation of spectral matrices: A EEG analysis centered approach
In the analysis of Electroencephalograms (EEG), notably in their graphical modeling, the estimation of the spectral matrix and associated variables is of central importance. Often, when adjusting for the bandwidth of the spectral matrix estimate, singularity issues arise and information derived from the inverse spectral matrix is intractable. This requires the use of regularization methods, which have proven very popular in recent research. However, regularisation can be suboptimal for understanding connections within multichannel data and building graphical models. We propose a protocol that addresses this issue and that is specifically designed for spectral matrices of EEG data. It aims at maximising information retention for edge estimation in a graph, and unlike any existing regularisation method it solely relies on available data even at a conceptual level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS. A new method for determination of instantaneous pitch frequency from speech signals Wideband-FM demodulation for large wideband to narrowband conversion factors via multirate frequency transformations A practical strategy for spectral library partitioning and least-squares identification Question Review Model for Q&A systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1