{"title":"黑洞的壳层物理学","authors":"Ben Maybee","doi":"10.7488/ERA/1261","DOIUrl":null,"url":null,"abstract":"On-shell scattering amplitudes have proven to be useful tools for tackling the two-body problem in general relativity. This thesis outlines how to compute relevant classical observables that are themselves on-shell, directly from amplitudes; examples considered are the momentum impulse, total radiated momentum, and angular impulse for spinning particles. As applications we derive results relevant for black hole physics, computing in the post-Minkowskian expansion of GR, and construct a worldsheet effective action for the leading spin interactions of Kerr black holes.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-shell physics of black holes\",\"authors\":\"Ben Maybee\",\"doi\":\"10.7488/ERA/1261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-shell scattering amplitudes have proven to be useful tools for tackling the two-body problem in general relativity. This thesis outlines how to compute relevant classical observables that are themselves on-shell, directly from amplitudes; examples considered are the momentum impulse, total radiated momentum, and angular impulse for spinning particles. As applications we derive results relevant for black hole physics, computing in the post-Minkowskian expansion of GR, and construct a worldsheet effective action for the leading spin interactions of Kerr black holes.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7488/ERA/1261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7488/ERA/1261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-shell scattering amplitudes have proven to be useful tools for tackling the two-body problem in general relativity. This thesis outlines how to compute relevant classical observables that are themselves on-shell, directly from amplitudes; examples considered are the momentum impulse, total radiated momentum, and angular impulse for spinning particles. As applications we derive results relevant for black hole physics, computing in the post-Minkowskian expansion of GR, and construct a worldsheet effective action for the leading spin interactions of Kerr black holes.