分布式地理复制树中元素移动的一种有效方法

Q1 Computer Science IEEE Cloud Computing Pub Date : 2022-03-19 DOI:10.1109/CLOUD55607.2022.00071
Parwat Singh Anjana, Adithya Rajesh Chandrassery, Sathya Peri
{"title":"分布式地理复制树中元素移动的一种有效方法","authors":"Parwat Singh Anjana, Adithya Rajesh Chandrassery, Sathya Peri","doi":"10.1109/CLOUD55607.2022.00071","DOIUrl":null,"url":null,"abstract":"Replicated tree data structures are extensively used in collaborative applications and distributed file systems, where clients often perform move operations. Local move operations at different replicas may be safe. However, remote move operations may not be safe. When clients perform arbitrary move operations concurrently on different replicas, it could result in various bugs, making this operation challenging to implement. Previous work has revealed bugs such as data duplication and cycling in replicated trees. In this paper, we present an efficient algorithm to perform move operations on the distributed replicated tree while ensuring eventual consistency. The proposed technique is primarily concerned with resolving conflicts efficiently, requires no interaction between replicas, and works well with network partitions. We use the last write win semantics for conflict resolution based on globally unique timestamps of operations. The proposed solution requires only one compensation operation to avoid cycles being formed when move operations are applied. The proposed approach achieves an effective speedup of 14.6× to 68.19× over the state-of-the-art approach in a geo-replicated setting.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"55 1","pages":"479-488"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Approach to Move Elements in a Distributed Geo-Replicated Tree\",\"authors\":\"Parwat Singh Anjana, Adithya Rajesh Chandrassery, Sathya Peri\",\"doi\":\"10.1109/CLOUD55607.2022.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Replicated tree data structures are extensively used in collaborative applications and distributed file systems, where clients often perform move operations. Local move operations at different replicas may be safe. However, remote move operations may not be safe. When clients perform arbitrary move operations concurrently on different replicas, it could result in various bugs, making this operation challenging to implement. Previous work has revealed bugs such as data duplication and cycling in replicated trees. In this paper, we present an efficient algorithm to perform move operations on the distributed replicated tree while ensuring eventual consistency. The proposed technique is primarily concerned with resolving conflicts efficiently, requires no interaction between replicas, and works well with network partitions. We use the last write win semantics for conflict resolution based on globally unique timestamps of operations. The proposed solution requires only one compensation operation to avoid cycles being formed when move operations are applied. The proposed approach achieves an effective speedup of 14.6× to 68.19× over the state-of-the-art approach in a geo-replicated setting.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"55 1\",\"pages\":\"479-488\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

复制树数据结构广泛用于协作应用程序和分布式文件系统,其中客户端经常执行移动操作。不同副本上的本地移动操作可能是安全的。然而,远程移动操作可能并不安全。当客户端在不同副本上并发地执行任意移动操作时,可能会导致各种错误,从而使该操作难以实现。之前的工作已经揭示了数据复制和复制树中的循环等错误。在本文中,我们提出了一种有效的算法,在保证最终一致性的情况下对分布式复制树进行移动操作。所提出的技术主要关注有效地解决冲突,不需要副本之间的交互,并且可以很好地用于网络分区。我们使用基于全局唯一操作时间戳的最后写入获胜语义来解决冲突。所提出的解决方案只需要一个补偿操作,以避免在应用移动操作时形成循环。在地理复制环境中,与最先进的方法相比,建议的方法实现了14.6到68.19倍的有效加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Approach to Move Elements in a Distributed Geo-Replicated Tree
Replicated tree data structures are extensively used in collaborative applications and distributed file systems, where clients often perform move operations. Local move operations at different replicas may be safe. However, remote move operations may not be safe. When clients perform arbitrary move operations concurrently on different replicas, it could result in various bugs, making this operation challenging to implement. Previous work has revealed bugs such as data duplication and cycling in replicated trees. In this paper, we present an efficient algorithm to perform move operations on the distributed replicated tree while ensuring eventual consistency. The proposed technique is primarily concerned with resolving conflicts efficiently, requires no interaction between replicas, and works well with network partitions. We use the last write win semantics for conflict resolution based on globally unique timestamps of operations. The proposed solution requires only one compensation operation to avoid cycles being formed when move operations are applied. The proposed approach achieves an effective speedup of 14.6× to 68.19× over the state-of-the-art approach in a geo-replicated setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1