基于快速自适应神经网络分类器的共同基金业绩评价系统

Kehluh Wang, Szuwei Huang, Yi-Hsuan Chen
{"title":"基于快速自适应神经网络分类器的共同基金业绩评价系统","authors":"Kehluh Wang, Szuwei Huang, Yi-Hsuan Chen","doi":"10.1109/ICNC.2008.756","DOIUrl":null,"url":null,"abstract":"Application of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"36 1","pages":"479-483"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mutual Fund Performance Evaluation System Using Fast Adaptive Neural Network Classifier\",\"authors\":\"Kehluh Wang, Szuwei Huang, Yi-Hsuan Chen\",\"doi\":\"10.1109/ICNC.2008.756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"36 1\",\"pages\":\"479-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

金融信息系统的应用要求对不断变化的市场情况作出即时和快速的反应。本文的目的是利用快速自适应神经网络分类器(FANNC)构建一个共同基金绩效评估模型,并将我们的结果与反向传播神经网络(BPN)模型的结果进行比较。在我们的实验中,FANNC方法比BPN方法需要更少的时间来评估共同基金的表现。RMS也优于FANNC。这些结果适用于分类问题和预测问题,使FANNC成为需要大量数据和常规更新的金融应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutual Fund Performance Evaluation System Using Fast Adaptive Neural Network Classifier
Application of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1