增强算法,从用户数据中识别可预测的组件,并建立框架,检测社交媒体中的错误信息

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2022-07-18 DOI:10.1080/2573234X.2022.2100834
G. Dixit, A. Kushwaha
{"title":"增强算法,从用户数据中识别可预测的组件,并建立框架,检测社交媒体中的错误信息","authors":"G. Dixit, A. Kushwaha","doi":"10.1080/2573234X.2022.2100834","DOIUrl":null,"url":null,"abstract":"ABSTRACT The flow of distorted information on social media platforms cannot always be handled. As a result, digital misinformation has become a significant social, political, and technological risk factor. Extant research on detecting misinformation in social networks has focused on using metadata or characteristics of influential actors (users) and their group dynamics in isolation, but less on the act (information content) itself and on developing an integrated approach. We unify them to produce a data science framework to detect valid instances of misinformation from social media such as Twitter. Here we develop novel and efficient algorithmic improvements to extract predictable components from users’ data. The model results demonstrate a significant increase in performance beyond typical incremental improvements. This research proposes a novel term weighting scheme, clique-based features, and a metadata-based feature. These contributions to the data science literature can be helpful for future studies in the social media context.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic enhancements to identify predictable components from users’ data and a framework to detect misinformation in social media\",\"authors\":\"G. Dixit, A. Kushwaha\",\"doi\":\"10.1080/2573234X.2022.2100834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The flow of distorted information on social media platforms cannot always be handled. As a result, digital misinformation has become a significant social, political, and technological risk factor. Extant research on detecting misinformation in social networks has focused on using metadata or characteristics of influential actors (users) and their group dynamics in isolation, but less on the act (information content) itself and on developing an integrated approach. We unify them to produce a data science framework to detect valid instances of misinformation from social media such as Twitter. Here we develop novel and efficient algorithmic improvements to extract predictable components from users’ data. The model results demonstrate a significant increase in performance beyond typical incremental improvements. This research proposes a novel term weighting scheme, clique-based features, and a metadata-based feature. These contributions to the data science literature can be helpful for future studies in the social media context.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2022.2100834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2022.2100834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体平台上扭曲的信息流并非总能得到处理。因此,数字错误信息已成为一个重要的社会、政治和技术风险因素。现有关于在社交网络中检测错误信息的研究侧重于孤立地使用元数据或有影响力的行为者(用户)的特征及其群体动态,而较少关注行为(信息内容)本身和制定综合方法。我们将它们统一起来,形成一个数据科学框架,以检测来自社交媒体(如Twitter)的错误信息的有效实例。在这里,我们开发了新颖而有效的算法改进,以从用户数据中提取可预测的组件。模型结果表明,性能显著提高,超出了典型的增量改进。本研究提出了一种新的术语加权方案、基于团的特征和基于元数据的特征。这些对数据科学文献的贡献可能有助于未来在社交媒体背景下的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithmic enhancements to identify predictable components from users’ data and a framework to detect misinformation in social media
ABSTRACT The flow of distorted information on social media platforms cannot always be handled. As a result, digital misinformation has become a significant social, political, and technological risk factor. Extant research on detecting misinformation in social networks has focused on using metadata or characteristics of influential actors (users) and their group dynamics in isolation, but less on the act (information content) itself and on developing an integrated approach. We unify them to produce a data science framework to detect valid instances of misinformation from social media such as Twitter. Here we develop novel and efficient algorithmic improvements to extract predictable components from users’ data. The model results demonstrate a significant increase in performance beyond typical incremental improvements. This research proposes a novel term weighting scheme, clique-based features, and a metadata-based feature. These contributions to the data science literature can be helpful for future studies in the social media context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Decoding technological frames: a qualitative inquiry into business analytics perspectives Maximising competitive advantage: the role of strategic business analytics framework in business strategies Data Analytics for Societal Challenges: Examining Student Participation in the National School Lunch Program Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1