{"title":"微波频率下生物组织介电特性估计的天线标定方法","authors":"David C. Garrett, J. Bourqui, E. Fear","doi":"10.2528/PIER16122204","DOIUrl":null,"url":null,"abstract":"We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"57 1","pages":"73-87"},"PeriodicalIF":6.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Antenna Calibration Method for Dielectric Property Estimation of Biological Tissues at Microwave Frequencies\",\"authors\":\"David C. Garrett, J. Bourqui, E. Fear\",\"doi\":\"10.2528/PIER16122204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"57 1\",\"pages\":\"73-87\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER16122204\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER16122204","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Antenna Calibration Method for Dielectric Property Estimation of Biological Tissues at Microwave Frequencies
We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.