Confuga: POSIX工作流的可扩展数据密集型计算

P. Donnelly, Nicholas L. Hazekamp, D. Thain
{"title":"Confuga: POSIX工作流的可扩展数据密集型计算","authors":"P. Donnelly, Nicholas L. Hazekamp, D. Thain","doi":"10.1109/CCGrid.2015.95","DOIUrl":null,"url":null,"abstract":"Today's big-data analysis systems achieve performance and scalability by requiring end users to embrace a novel programming model. This approach is highly effective whose the objective is to compute relatively simple functions on colossal amounts of data, but it is not a good match for a scientific computing environment which depends on complex applications written for the conventional POSIX environment. To address this gap, we introduce Conjugal, a scalable data-intensive computing system that is largely compatible with the POSIX environment. Conjugal brings together the workflow model of scientific computing with the storage architecture of other big data systems. Conjugal accepts large workflows of standard POSIX applications arranged into graphs, and then executes them in a cluster, exploiting both parallelism and data-locality. By making use of the workload structure, Conjugal is able to avoid the long-standing problems of metadata scalability and load instability found in many large scale computing and storage systems. We show that CompUSA's approach to load control offers improvements of up to 228% in cluster network utilization and 23% reductions in workflow execution time.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"15 1","pages":"392-401"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Confuga: Scalable Data Intensive Computing for POSIX Workflows\",\"authors\":\"P. Donnelly, Nicholas L. Hazekamp, D. Thain\",\"doi\":\"10.1109/CCGrid.2015.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's big-data analysis systems achieve performance and scalability by requiring end users to embrace a novel programming model. This approach is highly effective whose the objective is to compute relatively simple functions on colossal amounts of data, but it is not a good match for a scientific computing environment which depends on complex applications written for the conventional POSIX environment. To address this gap, we introduce Conjugal, a scalable data-intensive computing system that is largely compatible with the POSIX environment. Conjugal brings together the workflow model of scientific computing with the storage architecture of other big data systems. Conjugal accepts large workflows of standard POSIX applications arranged into graphs, and then executes them in a cluster, exploiting both parallelism and data-locality. By making use of the workload structure, Conjugal is able to avoid the long-standing problems of metadata scalability and load instability found in many large scale computing and storage systems. We show that CompUSA's approach to load control offers improvements of up to 228% in cluster network utilization and 23% reductions in workflow execution time.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"15 1\",\"pages\":\"392-401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当今的大数据分析系统通过要求最终用户采用新颖的编程模型来实现性能和可扩展性。这种方法非常有效,其目标是在大量数据上计算相对简单的函数,但它不适合科学计算环境,因为科学计算环境依赖于为传统POSIX环境编写的复杂应用程序。为了解决这个问题,我们引入了Conjugal,这是一个可扩展的数据密集型计算系统,与POSIX环境基本兼容。Conjugal将科学计算的工作流模型与其他大数据系统的存储架构结合在一起。Conjugal接受排列成图形的标准POSIX应用程序的大型工作流,然后在集群中执行它们,利用并行性和数据局部性。通过使用这种工作负载结构,Conjugal可以避免许多大型计算和存储系统中长期存在的元数据可扩展性和负载不稳定问题。我们表明,CompUSA的负载控制方法在集群网络利用率方面提供了高达228%的改进,在工作流执行时间方面减少了23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Confuga: Scalable Data Intensive Computing for POSIX Workflows
Today's big-data analysis systems achieve performance and scalability by requiring end users to embrace a novel programming model. This approach is highly effective whose the objective is to compute relatively simple functions on colossal amounts of data, but it is not a good match for a scientific computing environment which depends on complex applications written for the conventional POSIX environment. To address this gap, we introduce Conjugal, a scalable data-intensive computing system that is largely compatible with the POSIX environment. Conjugal brings together the workflow model of scientific computing with the storage architecture of other big data systems. Conjugal accepts large workflows of standard POSIX applications arranged into graphs, and then executes them in a cluster, exploiting both parallelism and data-locality. By making use of the workload structure, Conjugal is able to avoid the long-standing problems of metadata scalability and load instability found in many large scale computing and storage systems. We show that CompUSA's approach to load control offers improvements of up to 228% in cluster network utilization and 23% reductions in workflow execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1