利用监督机器学习从等位基因频率推断人口历史的计算效率。

IF 0.7 Q2 LAW Alternative Law Journal Pub Date : 2024-02-15 DOI:10.1101/2023.05.24.542158
Linh N Tran, Connie K Sun, Travis J Struck, Mathews Sajan, Ryan N Gutenkunst
{"title":"利用监督机器学习从等位基因频率推断人口历史的计算效率。","authors":"Linh N Tran, Connie K Sun, Travis J Struck, Mathews Sajan, Ryan N Gutenkunst","doi":"10.1101/2023.05.24.542158","DOIUrl":null,"url":null,"abstract":"<p><p>Inferring past demographic history of natural populations from genomic data is of central concern in many studies across research fields. Previously, our group had developed dadi, a widely used demographic history inference method based on the allele frequency spectrum (AFS) and maximum composite likelihood optimization. However, dadi's optimization procedure can be computationally expensive. Here, we developed donni (demography optimization via neural network inference), a new inference method based on dadi that is more efficient while maintaining comparable inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained networks can then be used to instantaneously infer the model parameters from future input data AFS. We demonstrated that for many demographic models, donni can infer some parameters, such as population size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy comparable to parameters inferred by dadi's likelihood optimization while bypassing its long and computationally intensive evaluation process. donni's performance demonstrates that supervised machine learning algorithms may be a promising avenue for developing more sustainable and computationally efficient demographic history inference methods.</p>","PeriodicalId":44595,"journal":{"name":"Alternative Law Journal","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888863/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computationally efficient demographic history inference from allele frequencies with supervised machine learning.\",\"authors\":\"Linh N Tran, Connie K Sun, Travis J Struck, Mathews Sajan, Ryan N Gutenkunst\",\"doi\":\"10.1101/2023.05.24.542158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inferring past demographic history of natural populations from genomic data is of central concern in many studies across research fields. Previously, our group had developed dadi, a widely used demographic history inference method based on the allele frequency spectrum (AFS) and maximum composite likelihood optimization. However, dadi's optimization procedure can be computationally expensive. Here, we developed donni (demography optimization via neural network inference), a new inference method based on dadi that is more efficient while maintaining comparable inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained networks can then be used to instantaneously infer the model parameters from future input data AFS. We demonstrated that for many demographic models, donni can infer some parameters, such as population size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy comparable to parameters inferred by dadi's likelihood optimization while bypassing its long and computationally intensive evaluation process. donni's performance demonstrates that supervised machine learning algorithms may be a promising avenue for developing more sustainable and computationally efficient demographic history inference methods.</p>\",\"PeriodicalId\":44595,\"journal\":{\"name\":\"Alternative Law Journal\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alternative Law Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.05.24.542158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LAW\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alternative Law Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.24.542158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LAW","Score":null,"Total":0}
引用次数: 0

摘要

从基因组数据推断自然种群过去的人口历史是许多研究领域的核心问题。在此之前,我们的研究小组已经开发出了一种基于等位基因频率谱(AFS)和最大复合似然法优化的人口历史推断方法--dadi。然而,dadi 的优化过程计算成本很高。在此,我们开发了一种基于 dadi 的新推断方法 donni(通过神经网络推断进行人口学优化),它在保持可比推断精度的同时效率更高。对于每个由 dadi 支持的人口统计模型,donni 会模拟一系列模型参数的预期 AFS,然后使用模拟的 AFS 训练一组均方差估计神经网络。训练好的网络可用于从未来的输入数据 AFS 中即时推断模型参数。我们证明,对于许多人口统计模型,donni 可以很好地推断出一些参数,如种群数量变化,也可以很好地推断出其他参数,如迁移率和人口统计事件发生的时间。重要的是,donni 可以从输入 AFS 中提供参数和置信区间估计值,其准确性可与 dadi 的似然优化推断参数相媲美,同时还绕过了其冗长且计算密集的评估过程。donni 的表现表明,监督机器学习算法可能是开发更可持续、计算效率更高的人口历史推断方法的一个有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computationally efficient demographic history inference from allele frequencies with supervised machine learning.

Inferring past demographic history of natural populations from genomic data is of central concern in many studies across research fields. Previously, our group had developed dadi, a widely used demographic history inference method based on the allele frequency spectrum (AFS) and maximum composite likelihood optimization. However, dadi's optimization procedure can be computationally expensive. Here, we developed donni (demography optimization via neural network inference), a new inference method based on dadi that is more efficient while maintaining comparable inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained networks can then be used to instantaneously infer the model parameters from future input data AFS. We demonstrated that for many demographic models, donni can infer some parameters, such as population size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy comparable to parameters inferred by dadi's likelihood optimization while bypassing its long and computationally intensive evaluation process. donni's performance demonstrates that supervised machine learning algorithms may be a promising avenue for developing more sustainable and computationally efficient demographic history inference methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
58
期刊最新文献
Coming, ready or not Beyond the Preamble: Legislating the right to self-determination in a NSW Human Rights Act Family inclusion in child protection: Law, courts and balancing risks Returning to rebellious roots: What rebellious lawyering can offer progressive law in Australia Forks in the road to equality: The path for same-sex attracted individuals in Australia and Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1