Yan Zhang , Haitao Sun , Yu Ji , Fang Nie , Rong Wang , Wei Han
{"title":"利用定量蛋白质组分析阿司匹林对结肠癌的影响","authors":"Yan Zhang , Haitao Sun , Yu Ji , Fang Nie , Rong Wang , Wei Han","doi":"10.1016/j.cpt.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Colon cancer is one of the most prevalent digestive cancers worldwide. Results of epidemiological, experimental, and clinical studies suggest that aspirin inhibits the development of colon cancer. This study aimed to systematically elucidate the molecular mechanisms by which aspirin prevents colon carcinogenesis.</p></div><div><h3>Methods</h3><p>We determined the global protein expression profiles of colorectal cancer and aspirin-treated cells using quantitative proteomic analysis. We analyzed the proteomic results using bioinformatics (including differential proteins, protein annotation, Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways, and protein–protein interaction [PPI] network). The viability of the colon cancer cell line and HT29 cells treated with aspirin was determined using the cell counting kit-8 assay. The differentially expressed proteins, such as p53 and cyclin-dependent kinase 1 (CDK1), were quantified using real-time polymerase chain reaction (PCR) and Western blotting. We measured cell cycle distribution and apoptosis in HT29 cells exposed to aspirin using fluorescence-activated cell sorting (FACS).</p></div><div><h3>Results</h3><p>We found that 552 proteins were significantly dysregulated, of which 208 and 334 were upregulated and downregulated, respectively, in colon cancer cells exposed to 10 mmol/L of aspirin (95% confidence interval [CI]: -1.269 to -0.106, <em>P</em> < 0.05). Further gene enrichment analysis revealed that cell cycle-related proteins, such as p53 and CDK1, were significantly differentially expressed. Proteomic analysis showed that after 24 h of aspirin exposure, the level of p53 increased by 2.52-fold and CDK1 was downregulated to half that of the controls in HT29 cells (95% CI: -0.619 to -0.364, <em>P</em> < 0.05). Real-time PCR and Western blotting results showed that p53 was upregulated (95%CI: -3.088 to -1.912, <em>P</em> < 0.001) and CDK1 was significantly downregulated after aspirin exposure in colon cancer cells (95% CI: 0.576 to 1.045, <em>P</em> < 0.05). We observed that aspirin promoted G1/S cell cycle arrest in HT29 cells. We confirmed that aspirin induces apoptosis in human HT29 colon cancer cells in a concentration-dependent manner.</p></div><div><h3>Conclusions</h3><p>These results indicate that aspirin induces G1 arrest and apoptosis in colorectal cancer cells via the p53–CDK1 pathway. Aspirin may be a promising drug candidate for colon cancer prevention.</p></div>","PeriodicalId":93920,"journal":{"name":"Cancer pathogenesis and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949713223000307/pdfft?md5=423e0b66aa48df2db38410cc7e62a44e&pid=1-s2.0-S2949713223000307-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of aspirin on colon cancer using quantitative proteomic analysis\",\"authors\":\"Yan Zhang , Haitao Sun , Yu Ji , Fang Nie , Rong Wang , Wei Han\",\"doi\":\"10.1016/j.cpt.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Colon cancer is one of the most prevalent digestive cancers worldwide. Results of epidemiological, experimental, and clinical studies suggest that aspirin inhibits the development of colon cancer. This study aimed to systematically elucidate the molecular mechanisms by which aspirin prevents colon carcinogenesis.</p></div><div><h3>Methods</h3><p>We determined the global protein expression profiles of colorectal cancer and aspirin-treated cells using quantitative proteomic analysis. We analyzed the proteomic results using bioinformatics (including differential proteins, protein annotation, Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways, and protein–protein interaction [PPI] network). The viability of the colon cancer cell line and HT29 cells treated with aspirin was determined using the cell counting kit-8 assay. The differentially expressed proteins, such as p53 and cyclin-dependent kinase 1 (CDK1), were quantified using real-time polymerase chain reaction (PCR) and Western blotting. We measured cell cycle distribution and apoptosis in HT29 cells exposed to aspirin using fluorescence-activated cell sorting (FACS).</p></div><div><h3>Results</h3><p>We found that 552 proteins were significantly dysregulated, of which 208 and 334 were upregulated and downregulated, respectively, in colon cancer cells exposed to 10 mmol/L of aspirin (95% confidence interval [CI]: -1.269 to -0.106, <em>P</em> < 0.05). Further gene enrichment analysis revealed that cell cycle-related proteins, such as p53 and CDK1, were significantly differentially expressed. Proteomic analysis showed that after 24 h of aspirin exposure, the level of p53 increased by 2.52-fold and CDK1 was downregulated to half that of the controls in HT29 cells (95% CI: -0.619 to -0.364, <em>P</em> < 0.05). Real-time PCR and Western blotting results showed that p53 was upregulated (95%CI: -3.088 to -1.912, <em>P</em> < 0.001) and CDK1 was significantly downregulated after aspirin exposure in colon cancer cells (95% CI: 0.576 to 1.045, <em>P</em> < 0.05). We observed that aspirin promoted G1/S cell cycle arrest in HT29 cells. We confirmed that aspirin induces apoptosis in human HT29 colon cancer cells in a concentration-dependent manner.</p></div><div><h3>Conclusions</h3><p>These results indicate that aspirin induces G1 arrest and apoptosis in colorectal cancer cells via the p53–CDK1 pathway. Aspirin may be a promising drug candidate for colon cancer prevention.</p></div>\",\"PeriodicalId\":93920,\"journal\":{\"name\":\"Cancer pathogenesis and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949713223000307/pdfft?md5=423e0b66aa48df2db38410cc7e62a44e&pid=1-s2.0-S2949713223000307-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer pathogenesis and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949713223000307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer pathogenesis and therapy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949713223000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of aspirin on colon cancer using quantitative proteomic analysis
Background
Colon cancer is one of the most prevalent digestive cancers worldwide. Results of epidemiological, experimental, and clinical studies suggest that aspirin inhibits the development of colon cancer. This study aimed to systematically elucidate the molecular mechanisms by which aspirin prevents colon carcinogenesis.
Methods
We determined the global protein expression profiles of colorectal cancer and aspirin-treated cells using quantitative proteomic analysis. We analyzed the proteomic results using bioinformatics (including differential proteins, protein annotation, Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways, and protein–protein interaction [PPI] network). The viability of the colon cancer cell line and HT29 cells treated with aspirin was determined using the cell counting kit-8 assay. The differentially expressed proteins, such as p53 and cyclin-dependent kinase 1 (CDK1), were quantified using real-time polymerase chain reaction (PCR) and Western blotting. We measured cell cycle distribution and apoptosis in HT29 cells exposed to aspirin using fluorescence-activated cell sorting (FACS).
Results
We found that 552 proteins were significantly dysregulated, of which 208 and 334 were upregulated and downregulated, respectively, in colon cancer cells exposed to 10 mmol/L of aspirin (95% confidence interval [CI]: -1.269 to -0.106, P < 0.05). Further gene enrichment analysis revealed that cell cycle-related proteins, such as p53 and CDK1, were significantly differentially expressed. Proteomic analysis showed that after 24 h of aspirin exposure, the level of p53 increased by 2.52-fold and CDK1 was downregulated to half that of the controls in HT29 cells (95% CI: -0.619 to -0.364, P < 0.05). Real-time PCR and Western blotting results showed that p53 was upregulated (95%CI: -3.088 to -1.912, P < 0.001) and CDK1 was significantly downregulated after aspirin exposure in colon cancer cells (95% CI: 0.576 to 1.045, P < 0.05). We observed that aspirin promoted G1/S cell cycle arrest in HT29 cells. We confirmed that aspirin induces apoptosis in human HT29 colon cancer cells in a concentration-dependent manner.
Conclusions
These results indicate that aspirin induces G1 arrest and apoptosis in colorectal cancer cells via the p53–CDK1 pathway. Aspirin may be a promising drug candidate for colon cancer prevention.