基于位置的服务的常规行为度量

Aki Hayashi, T. Matsubayashi, H. Sawada
{"title":"基于位置的服务的常规行为度量","authors":"Aki Hayashi, T. Matsubayashi, H. Sawada","doi":"10.1145/2615569.2615657","DOIUrl":null,"url":null,"abstract":"We introduce a method that can measure the degree of regularity or irregularity of the behavior for enhancing the performance of location-based services (LBSs) such as check-in. It is still challenging for LBSs to determine the places to recommend that best suits the user's needs. Our aim is to identify the user's status (regular or irregular) of each check-in. Most previous studies approached this problem by acquiring usual locations (e.g., home or office) or assessing check-in frequency. We propose more effective measure by using a multinomial-distribution-based method that considers the periodic check-ins of the user on various time-scales. Our method can accurately identify irregular check-ins even in usual locations and we find that the users tend to continue irregular check-ins in a certain range of time.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"105 1","pages":"299-300"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regular behavior measure for location based services\",\"authors\":\"Aki Hayashi, T. Matsubayashi, H. Sawada\",\"doi\":\"10.1145/2615569.2615657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method that can measure the degree of regularity or irregularity of the behavior for enhancing the performance of location-based services (LBSs) such as check-in. It is still challenging for LBSs to determine the places to recommend that best suits the user's needs. Our aim is to identify the user's status (regular or irregular) of each check-in. Most previous studies approached this problem by acquiring usual locations (e.g., home or office) or assessing check-in frequency. We propose more effective measure by using a multinomial-distribution-based method that considers the periodic check-ins of the user on various time-scales. Our method can accurately identify irregular check-ins even in usual locations and we find that the users tend to continue irregular check-ins in a certain range of time.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"105 1\",\"pages\":\"299-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2615569.2615657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2615569.2615657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了一种方法,可以衡量行为的规律性或不规律性程度,以提高基于位置的服务(LBSs)的性能,如签到。对于lbs来说,确定推荐最适合用户需求的地方仍然是一个挑战。我们的目标是确定用户每次签到的状态(定期或不定期)。以前的大多数研究都是通过获取通常的地点(例如,家里或办公室)或评估签到频率来解决这个问题的。我们提出了一种基于多项分布的方法,该方法考虑了用户在不同时间尺度上的定期签到。我们的方法可以准确地识别不定期签到,即使在通常的地点,我们发现用户倾向于在一定的时间范围内继续不定期签到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regular behavior measure for location based services
We introduce a method that can measure the degree of regularity or irregularity of the behavior for enhancing the performance of location-based services (LBSs) such as check-in. It is still challenging for LBSs to determine the places to recommend that best suits the user's needs. Our aim is to identify the user's status (regular or irregular) of each check-in. Most previous studies approached this problem by acquiring usual locations (e.g., home or office) or assessing check-in frequency. We propose more effective measure by using a multinomial-distribution-based method that considers the periodic check-ins of the user on various time-scales. Our method can accurately identify irregular check-ins even in usual locations and we find that the users tend to continue irregular check-ins in a certain range of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinions on Homeopathy for COVID-19 on Twitter. An Initial Study of Depression Detection on Mandarin Textual through BERT Model WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022 WebSci '21: 13th ACM Web Science Conference 2021, Virtual Event, United Kingdom, 21-25 June, 2021, Companion Publication In conversation with Martha Lane Fox and Wendy Hall on the Future of the Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1