O. Younis, F. Rashid, S. K. Fakhrulddin, Muhammad Asmail Eleiwi, A. Hussein, T. A. Tahseen, Mohammed Ibrahim Ahmed
{"title":"列扁管不同迎角气流的CFD模拟分析","authors":"O. Younis, F. Rashid, S. K. Fakhrulddin, Muhammad Asmail Eleiwi, A. Hussein, T. A. Tahseen, Mohammed Ibrahim Ahmed","doi":"10.5098/hmt.19.6","DOIUrl":null,"url":null,"abstract":"The current study numerically analyzes the heat transfer enhancement and laminar fluid flow characteristics of four flat tubes with varying attack front airflow. The heat transfer characteristics of flat tubes are investigated in terms of Reynolds number, heat fluxes, and inclination angle. Four Reynolds numbers are studied (100, 200, 300, and 400), and three heat fluxes on the surface of the tubes are (1000, 2500, 3800 W/m 2 ), the inclination angle of the four flat tubes are (30 o , 45 o , 90 o ). ANSYS Fluent software v.18 discretizes and solves the governing equations using the finite volume approach across a specified control volume. According to the available data, using flat tubes increases the heat transfer in the channel. When tubes were used, the reattachment distance was reduced. When the Reynolds number is changed from 100 to 300, the heat transfer enhancement rises from 40.8 % to 55.79 % for the increase in the heat flux of 24.99 %.","PeriodicalId":46200,"journal":{"name":"Frontiers in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CFD SIMULATION IN THERMAL-HYDRAULIC ANALYSIS OF AIRFLOW ON DIFFERENT ATTACK ANGLES OF ROW FLAT TUBE\",\"authors\":\"O. Younis, F. Rashid, S. K. Fakhrulddin, Muhammad Asmail Eleiwi, A. Hussein, T. A. Tahseen, Mohammed Ibrahim Ahmed\",\"doi\":\"10.5098/hmt.19.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study numerically analyzes the heat transfer enhancement and laminar fluid flow characteristics of four flat tubes with varying attack front airflow. The heat transfer characteristics of flat tubes are investigated in terms of Reynolds number, heat fluxes, and inclination angle. Four Reynolds numbers are studied (100, 200, 300, and 400), and three heat fluxes on the surface of the tubes are (1000, 2500, 3800 W/m 2 ), the inclination angle of the four flat tubes are (30 o , 45 o , 90 o ). ANSYS Fluent software v.18 discretizes and solves the governing equations using the finite volume approach across a specified control volume. According to the available data, using flat tubes increases the heat transfer in the channel. When tubes were used, the reattachment distance was reduced. When the Reynolds number is changed from 100 to 300, the heat transfer enhancement rises from 40.8 % to 55.79 % for the increase in the heat flux of 24.99 %.\",\"PeriodicalId\":46200,\"journal\":{\"name\":\"Frontiers in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5098/hmt.19.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5098/hmt.19.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
CFD SIMULATION IN THERMAL-HYDRAULIC ANALYSIS OF AIRFLOW ON DIFFERENT ATTACK ANGLES OF ROW FLAT TUBE
The current study numerically analyzes the heat transfer enhancement and laminar fluid flow characteristics of four flat tubes with varying attack front airflow. The heat transfer characteristics of flat tubes are investigated in terms of Reynolds number, heat fluxes, and inclination angle. Four Reynolds numbers are studied (100, 200, 300, and 400), and three heat fluxes on the surface of the tubes are (1000, 2500, 3800 W/m 2 ), the inclination angle of the four flat tubes are (30 o , 45 o , 90 o ). ANSYS Fluent software v.18 discretizes and solves the governing equations using the finite volume approach across a specified control volume. According to the available data, using flat tubes increases the heat transfer in the channel. When tubes were used, the reattachment distance was reduced. When the Reynolds number is changed from 100 to 300, the heat transfer enhancement rises from 40.8 % to 55.79 % for the increase in the heat flux of 24.99 %.
期刊介绍:
Frontiers in Heat and Mass Transfer is a free-access and peer-reviewed online journal that provides a central vehicle for the exchange of basic ideas in heat and mass transfer between researchers and engineers around the globe. It disseminates information of permanent interest in the area of heat and mass transfer. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques and measurements as applied to all kinds of current and emerging problems are welcome. Contributions to the journal consist of original research on heat and mass transfer in equipment, thermal systems, thermodynamic processes, nanotechnology, biotechnology, information technology, energy and power applications, as well as security and related topics.