油气上游行业在恶劣条件下的能量收集

J. Correia, Cátia Rodrigues, R. Esteves, R. C. Bezerra de Melo, José Gutiérrez, André M. Pereira, J. Ventura
{"title":"油气上游行业在恶劣条件下的能量收集","authors":"J. Correia, Cátia Rodrigues, R. Esteves, R. C. Bezerra de Melo, José Gutiérrez, André M. Pereira, J. Ventura","doi":"10.2118/204877-ms","DOIUrl":null,"url":null,"abstract":"\n Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Harvesting Under Harsh Conditions for the Oil & Gas Upstream Industry\",\"authors\":\"J. Correia, Cátia Rodrigues, R. Esteves, R. C. Bezerra de Melo, José Gutiérrez, André M. Pereira, J. Ventura\",\"doi\":\"10.2118/204877-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.\",\"PeriodicalId\":11320,\"journal\":{\"name\":\"Day 3 Tue, November 30, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Tue, November 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204877-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204877-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境与安全传感在油气上游工业中变得越来越重要。然而,目前为这些传感器供电的解决方案既昂贵又危险,而且到目前为止,还没有技术能够在油气井的操作条件下产生电能。本文首次在相关环境中提出了一种基于纳米材料的能量收集技术,该技术利用了采油井中的流体运动。在恶劣的环境条件下(压力高达50 bar,温度为50ºC),测试了一种利用当地收集的能量为监测系统供电的设备。尽管这项技术尚处于早期开发阶段,但它在深水环境和存在连续流动条件的油气采油井中开辟了广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Harvesting Under Harsh Conditions for the Oil & Gas Upstream Industry
Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large Scale Placement For Multilateral Wells Using Network Optimization How to Make Sensitive Formations Produce Oil: Case Study of the Complex Laboratory Approach to Stimulation Fluid Optimization Novel Analytical Solution and Type-Curves for Lost-Circulation Diagnostics of Drilling Mud in Fractured Formation A Novel Workflow for Geosteering a Horizontal Well in a Low Resistivity Contrast Anisotropic Environment: A Case Study in Semoga Field, Indonesia Uncertainty Quantification and Optimization of Deep Learning for Fracture Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1