{"title":"在 GPU 上使用最小平方移动粒子半隐式方法进行流入和流出数值模拟","authors":"Yun Kong, Shuai Zhang, Jifa Zhang, Yao Zheng","doi":"10.1007/s40571-023-00643-5","DOIUrl":null,"url":null,"abstract":"<div><p>The implementation of the inlet and outlet boundaries is a key issue in the particle method. The boundary implementation at the inlet applicable to the original MPS method is difficult to be applied to the LSMPS method with higher accuracy. Advanced inlet and outlet boundary implementations are proposed in this study, including inlet boundaries with velocity profile, static pressure, total pressure, and deleted particle detection method for outlet boundary. Three pipe flow cases are used to verify the accuracy of inlet boundaries. For the velocity inlet boundary, the calculation of velocity near the central axis of the pipe has an average error of 0.17%. For the static pressure inlet boundary, the average error of pressure calculation near the central axis is 1.80%. For the total pressure inlet boundary, the numerical final velocity of water in the pipe has a 3.02% error compared with the theoretical result. A reservoir with two inlets and one outlet is used to verify the applicability of the above implementation in a 3D engineering case with five different inlet velocities. The results show that for different velocity inlets, the simulations obtain different filling times, and for velocity and pressure distributions near the outlet in accordance with the theoretical situation. The implementation proposed in this study can be used for practical engineering problems.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 2","pages":"627 - 641"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inflow and outflow numerical simulation using least-square moving particle semi-implicit method on GPU\",\"authors\":\"Yun Kong, Shuai Zhang, Jifa Zhang, Yao Zheng\",\"doi\":\"10.1007/s40571-023-00643-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The implementation of the inlet and outlet boundaries is a key issue in the particle method. The boundary implementation at the inlet applicable to the original MPS method is difficult to be applied to the LSMPS method with higher accuracy. Advanced inlet and outlet boundary implementations are proposed in this study, including inlet boundaries with velocity profile, static pressure, total pressure, and deleted particle detection method for outlet boundary. Three pipe flow cases are used to verify the accuracy of inlet boundaries. For the velocity inlet boundary, the calculation of velocity near the central axis of the pipe has an average error of 0.17%. For the static pressure inlet boundary, the average error of pressure calculation near the central axis is 1.80%. For the total pressure inlet boundary, the numerical final velocity of water in the pipe has a 3.02% error compared with the theoretical result. A reservoir with two inlets and one outlet is used to verify the applicability of the above implementation in a 3D engineering case with five different inlet velocities. The results show that for different velocity inlets, the simulations obtain different filling times, and for velocity and pressure distributions near the outlet in accordance with the theoretical situation. The implementation proposed in this study can be used for practical engineering problems.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 2\",\"pages\":\"627 - 641\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00643-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00643-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Inflow and outflow numerical simulation using least-square moving particle semi-implicit method on GPU
The implementation of the inlet and outlet boundaries is a key issue in the particle method. The boundary implementation at the inlet applicable to the original MPS method is difficult to be applied to the LSMPS method with higher accuracy. Advanced inlet and outlet boundary implementations are proposed in this study, including inlet boundaries with velocity profile, static pressure, total pressure, and deleted particle detection method for outlet boundary. Three pipe flow cases are used to verify the accuracy of inlet boundaries. For the velocity inlet boundary, the calculation of velocity near the central axis of the pipe has an average error of 0.17%. For the static pressure inlet boundary, the average error of pressure calculation near the central axis is 1.80%. For the total pressure inlet boundary, the numerical final velocity of water in the pipe has a 3.02% error compared with the theoretical result. A reservoir with two inlets and one outlet is used to verify the applicability of the above implementation in a 3D engineering case with five different inlet velocities. The results show that for different velocity inlets, the simulations obtain different filling times, and for velocity and pressure distributions near the outlet in accordance with the theoretical situation. The implementation proposed in this study can be used for practical engineering problems.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.