从生物节律到默认模式网络:在思维的冰山一角下隐藏着什么?

R. Jerath, Connor Beveridge
{"title":"从生物节律到默认模式网络:在思维的冰山一角下隐藏着什么?","authors":"R. Jerath, Connor Beveridge","doi":"10.4236/wjns.2019.94020","DOIUrl":null,"url":null,"abstract":"Our conscious day-to-day self is often described as the “tip of the iceberg” of a much greater cognitive system. The edge of the water divides the phenomenal self from the sub/unconscious underlying it. Similar to an iceberg, the unconscious activity below the water vastly outweighs the conscious activity above it. What exactly lies beneath the surface of this murky water is a tantalizing topic of research and theory. The current research predominantly focuses on the physiology of the brain and the default mode network has been identified as an intrinsic mode of functioning. It is well known that autonomic nervous system sympathovagal balance orchestrated by the central autonomic network is strongly associated with modulation of cardiac, respiratory rate and other visceral physiological activity. In this article, we use existing research and a novel theory to tie together the default mode network, the autonomic nervous system, and non-neural physiology to describe a hypothesis on a greater biological system from which intrinsic brain activity may be founded. This hypothesis is that intrinsic brain activity and connectivities are significantly founded on activity of the body. We review how cardiorespiratory and other rhythms and electrical activity of the body may modulate and even underlie fundamental activity of the human brain and ultimately the mind. A more holistic biological system that could interface the brain and body via mechanisms such as neurovascular coupling would more accurately describe the nature of neural systems. Greater knowledge on the association and interface of brain and body via isomorphic physiologic counterparts to mind may carry profound implications in understanding intrinsic activity of the brain, consciousness, mind, and mental illness.","PeriodicalId":23878,"journal":{"name":"World Journal of Neuroscience","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Biological Rhythms to the Default Mode Network: What Lies beneath the Tip of the Iceberg of Mind?\",\"authors\":\"R. Jerath, Connor Beveridge\",\"doi\":\"10.4236/wjns.2019.94020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our conscious day-to-day self is often described as the “tip of the iceberg” of a much greater cognitive system. The edge of the water divides the phenomenal self from the sub/unconscious underlying it. Similar to an iceberg, the unconscious activity below the water vastly outweighs the conscious activity above it. What exactly lies beneath the surface of this murky water is a tantalizing topic of research and theory. The current research predominantly focuses on the physiology of the brain and the default mode network has been identified as an intrinsic mode of functioning. It is well known that autonomic nervous system sympathovagal balance orchestrated by the central autonomic network is strongly associated with modulation of cardiac, respiratory rate and other visceral physiological activity. In this article, we use existing research and a novel theory to tie together the default mode network, the autonomic nervous system, and non-neural physiology to describe a hypothesis on a greater biological system from which intrinsic brain activity may be founded. This hypothesis is that intrinsic brain activity and connectivities are significantly founded on activity of the body. We review how cardiorespiratory and other rhythms and electrical activity of the body may modulate and even underlie fundamental activity of the human brain and ultimately the mind. A more holistic biological system that could interface the brain and body via mechanisms such as neurovascular coupling would more accurately describe the nature of neural systems. Greater knowledge on the association and interface of brain and body via isomorphic physiologic counterparts to mind may carry profound implications in understanding intrinsic activity of the brain, consciousness, mind, and mental illness.\",\"PeriodicalId\":23878,\"journal\":{\"name\":\"World Journal of Neuroscience\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wjns.2019.94020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjns.2019.94020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们有意识的日常自我常常被描述为一个更大的认知系统的“冰山一角”。水的边缘将现象性的自我与潜在的潜意识区分开来。就像冰山一样,水下的无意识活动远远超过水面上的有意识活动。在这浑浊的水面下究竟隐藏着什么是一个诱人的研究和理论课题。目前的研究主要集中在大脑的生理学和默认模式网络已被确定为一种内在的功能模式。众所周知,由中枢自主神经网络协调的自主神经系统交感迷走神经平衡与心脏、呼吸速率和其他内脏生理活动的调节密切相关。在这篇文章中,我们利用现有的研究和一个新的理论,将默认模式网络、自主神经系统和非神经生理学联系在一起,以描述一个更大的生物系统的假设,从这个生物系统中可以建立内在的大脑活动。这个假说认为,大脑的内在活动和连通性在很大程度上是建立在身体活动的基础上的。我们将回顾心肺和其他节律以及身体的电活动如何调节甚至影响人类大脑的基本活动,最终影响心灵。一个更全面的生物系统,可以通过神经血管耦合等机制连接大脑和身体,将更准确地描述神经系统的本质。通过心智的同构生理对应物,对大脑和身体的联系和界面有了更深入的了解,可能会对理解大脑、意识、心智和精神疾病的内在活动产生深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Biological Rhythms to the Default Mode Network: What Lies beneath the Tip of the Iceberg of Mind?
Our conscious day-to-day self is often described as the “tip of the iceberg” of a much greater cognitive system. The edge of the water divides the phenomenal self from the sub/unconscious underlying it. Similar to an iceberg, the unconscious activity below the water vastly outweighs the conscious activity above it. What exactly lies beneath the surface of this murky water is a tantalizing topic of research and theory. The current research predominantly focuses on the physiology of the brain and the default mode network has been identified as an intrinsic mode of functioning. It is well known that autonomic nervous system sympathovagal balance orchestrated by the central autonomic network is strongly associated with modulation of cardiac, respiratory rate and other visceral physiological activity. In this article, we use existing research and a novel theory to tie together the default mode network, the autonomic nervous system, and non-neural physiology to describe a hypothesis on a greater biological system from which intrinsic brain activity may be founded. This hypothesis is that intrinsic brain activity and connectivities are significantly founded on activity of the body. We review how cardiorespiratory and other rhythms and electrical activity of the body may modulate and even underlie fundamental activity of the human brain and ultimately the mind. A more holistic biological system that could interface the brain and body via mechanisms such as neurovascular coupling would more accurately describe the nature of neural systems. Greater knowledge on the association and interface of brain and body via isomorphic physiologic counterparts to mind may carry profound implications in understanding intrinsic activity of the brain, consciousness, mind, and mental illness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alzheimer’s Disease Aβ-Amyloid Plaque Morphology Varies According to APOE Isotype Evolving Profile and Determinants of Post-Stroke Cognitive Impairment in the 3rd Month among Kinshasa’s Survivors (Democratic Republic of the Congo) Angiographic Features of Intracranial Aneurisms in Mali: A Preliminary Study of 105 Patients Proper Understanding of the Nerve Impulses and the Action Potential Photobiomodulation with Super-Pulsed Laser Shows Efficacy for Stroke and Aphasia: Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1