甘薯叶源活性炭去除沼气中硫化氢的性能研究

Geni Juma, Revocatus Lazaro Machunda, T. Pogrebnaya
{"title":"甘薯叶源活性炭去除沼气中硫化氢的性能研究","authors":"Geni Juma, Revocatus Lazaro Machunda, T. Pogrebnaya","doi":"10.1155/2020/9121085","DOIUrl":null,"url":null,"abstract":"In this study, sweet potato leaf activated carbon (SpLAC) was prepared by the chemical activation method using KOH and applied as an adsorbent for H2S removal from biogas. The study focused on the understanding of the effect of carbonization temperature ( ), varying KOH : C activation ratio, flow rate (FR) of biogas, and mass of SpLAC on sample adsorption capacity. The BET analysis was performed for both fresh and spent activated carbons as well as for carbonized samples, which were not activated; also, the activated carbon was characterized by XRF and CHNS techniques. The results showed that removal efficiency (RE) of the SpLAC increased with increase carbonization temperature from 600 to 800°C and the mass of sorbent from 0.4 g to 1.0 g. The optimal test conditions were determined: 1.0 g of sorbent with a KOH : C ratio of 1 : 1, °C, and  m3/h which resulted in a sorption capacity of about 3.7 g S/100 g of the SpLAC. Our findings corroborated that H2S removal was contributed not only by the adsorption process with the pore available but also by the presence of iron in the sample that reacted with H2S. Therefore, upon successful H2S sorption, SpLAC is suggested as a viable adsorbent for H2S removal from biogas.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"85 10 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance of Sweet Potato’s Leaf-Derived Activated Carbon for Hydrogen Sulphide Removal from Biogas\",\"authors\":\"Geni Juma, Revocatus Lazaro Machunda, T. Pogrebnaya\",\"doi\":\"10.1155/2020/9121085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, sweet potato leaf activated carbon (SpLAC) was prepared by the chemical activation method using KOH and applied as an adsorbent for H2S removal from biogas. The study focused on the understanding of the effect of carbonization temperature ( ), varying KOH : C activation ratio, flow rate (FR) of biogas, and mass of SpLAC on sample adsorption capacity. The BET analysis was performed for both fresh and spent activated carbons as well as for carbonized samples, which were not activated; also, the activated carbon was characterized by XRF and CHNS techniques. The results showed that removal efficiency (RE) of the SpLAC increased with increase carbonization temperature from 600 to 800°C and the mass of sorbent from 0.4 g to 1.0 g. The optimal test conditions were determined: 1.0 g of sorbent with a KOH : C ratio of 1 : 1, °C, and  m3/h which resulted in a sorption capacity of about 3.7 g S/100 g of the SpLAC. Our findings corroborated that H2S removal was contributed not only by the adsorption process with the pore available but also by the presence of iron in the sample that reacted with H2S. Therefore, upon successful H2S sorption, SpLAC is suggested as a viable adsorbent for H2S removal from biogas.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"85 10 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/9121085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9121085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究采用KOH化学活化法制备甘薯叶活性炭(SpLAC),并将其作为脱除沼气中H2S的吸附剂。研究了炭化温度()、不同KOH: C活化比、沼气流速(FR)和SpLAC质量对样品吸附量的影响。BET分析对新鲜活性炭和废活性炭以及未活化的炭化样品进行了分析;用XRF和CHNS技术对活性炭进行了表征。结果表明,随着炭化温度从600℃增加到800℃,吸附剂质量从0.4 g增加到1.0 g, SpLAC的去除率有所提高。确定了最佳测试条件:吸附剂1.0 g, KOH: C为1:1,温度为°C, m3/h,吸附量为3.7 g S/100 g SpLAC。我们的研究结果证实,H2S的去除不仅是由于孔隙的吸附过程,而且还由于样品中存在与H2S反应的铁。因此,在成功吸附H2S后,SpLAC被认为是一种可行的去除沼气中H2S的吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of Sweet Potato’s Leaf-Derived Activated Carbon for Hydrogen Sulphide Removal from Biogas
In this study, sweet potato leaf activated carbon (SpLAC) was prepared by the chemical activation method using KOH and applied as an adsorbent for H2S removal from biogas. The study focused on the understanding of the effect of carbonization temperature ( ), varying KOH : C activation ratio, flow rate (FR) of biogas, and mass of SpLAC on sample adsorption capacity. The BET analysis was performed for both fresh and spent activated carbons as well as for carbonized samples, which were not activated; also, the activated carbon was characterized by XRF and CHNS techniques. The results showed that removal efficiency (RE) of the SpLAC increased with increase carbonization temperature from 600 to 800°C and the mass of sorbent from 0.4 g to 1.0 g. The optimal test conditions were determined: 1.0 g of sorbent with a KOH : C ratio of 1 : 1, °C, and  m3/h which resulted in a sorption capacity of about 3.7 g S/100 g of the SpLAC. Our findings corroborated that H2S removal was contributed not only by the adsorption process with the pore available but also by the presence of iron in the sample that reacted with H2S. Therefore, upon successful H2S sorption, SpLAC is suggested as a viable adsorbent for H2S removal from biogas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
28 weeks
期刊最新文献
Current Status and Future Prospects of Small-Scale Household Biodigesters in Sub-Saharan Africa Strategic Sizing and Placement of Distributed Generation in Radial Distributed Networks Using Multiobjective PSO Catalytic Pyrolysis of Plastic Waste to Liquid Fuel Using Local Clay Catalyst Optimization of Syngas Quality for Fischer-Tropsch Synthesis Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1