用循环卷积网络描述反射共聚焦显微镜图像中的皮肤层

A. Bozkurt, Trevor Gale, Kivanç Köse, C. Alessi-Fox, D. Brooks, M. Rajadhyaksha, Jennifer G. Dy
{"title":"用循环卷积网络描述反射共聚焦显微镜图像中的皮肤层","authors":"A. Bozkurt, Trevor Gale, Kivanç Köse, C. Alessi-Fox, D. Brooks, M. Rajadhyaksha, Jennifer G. Dy","doi":"10.1109/CVPRW.2017.108","DOIUrl":null,"url":null,"abstract":"Reflectance confocal microscopy (RCM) is an effective, non-invasive pre-screening tool for cancer diagnosis. However, acquiring and reading RCM images requires extensive training and experience, and novice clinicians exhibit high variance in diagnostic accuracy. Consequently, there is a compelling need for quantitative tools to standardize image acquisition and analysis. In this study, we use deep recurrent convolutional neural networks to delineate skin strata in stacks of RCM images collected at consecutive depths. To perform diagnostic analysis, clinicians collect RCM images at 4-5 specific layers in the tissue. Our model automates this process by discriminating between RCM images of different layers. Testing our model on an expert labeled dataset of 504 RCM stacks, we achieve 87.97% classification accuracy, and a 9-fold reduction in the number of anatomically impossible errors compared to the previous state-of-the-art.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"34 1","pages":"777-785"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Delineation of Skin Strata in Reflectance Confocal Microscopy Images with Recurrent Convolutional Networks\",\"authors\":\"A. Bozkurt, Trevor Gale, Kivanç Köse, C. Alessi-Fox, D. Brooks, M. Rajadhyaksha, Jennifer G. Dy\",\"doi\":\"10.1109/CVPRW.2017.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflectance confocal microscopy (RCM) is an effective, non-invasive pre-screening tool for cancer diagnosis. However, acquiring and reading RCM images requires extensive training and experience, and novice clinicians exhibit high variance in diagnostic accuracy. Consequently, there is a compelling need for quantitative tools to standardize image acquisition and analysis. In this study, we use deep recurrent convolutional neural networks to delineate skin strata in stacks of RCM images collected at consecutive depths. To perform diagnostic analysis, clinicians collect RCM images at 4-5 specific layers in the tissue. Our model automates this process by discriminating between RCM images of different layers. Testing our model on an expert labeled dataset of 504 RCM stacks, we achieve 87.97% classification accuracy, and a 9-fold reduction in the number of anatomically impossible errors compared to the previous state-of-the-art.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"34 1\",\"pages\":\"777-785\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

反射共聚焦显微镜(RCM)是一种有效的、非侵入性的癌症诊断预筛查工具。然而,获取和读取RCM图像需要广泛的培训和经验,新手临床医生在诊断准确性方面表现出很大的差异。因此,迫切需要定量工具来标准化图像采集和分析。在这项研究中,我们使用深度递归卷积神经网络来描绘在连续深度收集的RCM图像堆栈中的皮肤层。为了进行诊断分析,临床医生收集组织中4-5个特定层的RCM图像。我们的模型通过区分不同层的RCM图像来自动化这一过程。在504个RCM堆叠的专家标记数据集上测试我们的模型,我们实现了87.97%的分类准确率,与以前的最先进技术相比,解剖学上不可能的错误数量减少了9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delineation of Skin Strata in Reflectance Confocal Microscopy Images with Recurrent Convolutional Networks
Reflectance confocal microscopy (RCM) is an effective, non-invasive pre-screening tool for cancer diagnosis. However, acquiring and reading RCM images requires extensive training and experience, and novice clinicians exhibit high variance in diagnostic accuracy. Consequently, there is a compelling need for quantitative tools to standardize image acquisition and analysis. In this study, we use deep recurrent convolutional neural networks to delineate skin strata in stacks of RCM images collected at consecutive depths. To perform diagnostic analysis, clinicians collect RCM images at 4-5 specific layers in the tissue. Our model automates this process by discriminating between RCM images of different layers. Testing our model on an expert labeled dataset of 504 RCM stacks, we achieve 87.97% classification accuracy, and a 9-fold reduction in the number of anatomically impossible errors compared to the previous state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1