Narges Rahmanian, M. Bozorgmehr, monire torabi, A. Akbari, A. Zarnani
{"title":"细胞分离:潜力和缺陷","authors":"Narges Rahmanian, M. Bozorgmehr, monire torabi, A. Akbari, A. Zarnani","doi":"10.1080/10826068.2016.1163579","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cell separation techniques play an indispensable part in numerous basic biological studies and even clinical settings. Although various cell isolation methods with diverse applications have been devised so far, not all of them have been able to gain widespread popularity among researchers and clinicians. There is not a single method known to be advantageous over all cell isolation techniques, and in fact, it is the researcher’s aim in performing a study that determines the most suitable method. A perfect method for one study might not be necessarily a proper choice for another and likewise, expensive and complex isolation methods might not always be the best choices. There are several criteria such as cell purity, viability, activation status, and frequency that need to be given serious thought before selecting an isolation technique. Moreover, time and cost are two of the key elements that should be taken into consideration before implementing a project. Hence, here we provide a succinct description of six more popular cell separation methods with respect to their principles, advantages, and disadvantages as well as their most common applications. We further provide several key features of each technique so that it helps the researchers to take the first step toward opting for the best method that fits well into their projects.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Cell separation: Potentials and pitfalls\",\"authors\":\"Narges Rahmanian, M. Bozorgmehr, monire torabi, A. Akbari, A. Zarnani\",\"doi\":\"10.1080/10826068.2016.1163579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cell separation techniques play an indispensable part in numerous basic biological studies and even clinical settings. Although various cell isolation methods with diverse applications have been devised so far, not all of them have been able to gain widespread popularity among researchers and clinicians. There is not a single method known to be advantageous over all cell isolation techniques, and in fact, it is the researcher’s aim in performing a study that determines the most suitable method. A perfect method for one study might not be necessarily a proper choice for another and likewise, expensive and complex isolation methods might not always be the best choices. There are several criteria such as cell purity, viability, activation status, and frequency that need to be given serious thought before selecting an isolation technique. Moreover, time and cost are two of the key elements that should be taken into consideration before implementing a project. Hence, here we provide a succinct description of six more popular cell separation methods with respect to their principles, advantages, and disadvantages as well as their most common applications. We further provide several key features of each technique so that it helps the researchers to take the first step toward opting for the best method that fits well into their projects.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2016.1163579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2016.1163579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ABSTRACT Cell separation techniques play an indispensable part in numerous basic biological studies and even clinical settings. Although various cell isolation methods with diverse applications have been devised so far, not all of them have been able to gain widespread popularity among researchers and clinicians. There is not a single method known to be advantageous over all cell isolation techniques, and in fact, it is the researcher’s aim in performing a study that determines the most suitable method. A perfect method for one study might not be necessarily a proper choice for another and likewise, expensive and complex isolation methods might not always be the best choices. There are several criteria such as cell purity, viability, activation status, and frequency that need to be given serious thought before selecting an isolation technique. Moreover, time and cost are two of the key elements that should be taken into consideration before implementing a project. Hence, here we provide a succinct description of six more popular cell separation methods with respect to their principles, advantages, and disadvantages as well as their most common applications. We further provide several key features of each technique so that it helps the researchers to take the first step toward opting for the best method that fits well into their projects.