Dhiraj Basnet, Anusha Lamichhane, Amrit Panthi, Bipin Lamichhane, M. Badrudoza, R. Pandey
{"title":"单度磁悬浮控制位置导航","authors":"Dhiraj Basnet, Anusha Lamichhane, Amrit Panthi, Bipin Lamichhane, M. Badrudoza, R. Pandey","doi":"10.11591/eecsi.v6i0.2016","DOIUrl":null,"url":null,"abstract":"A permanent magnet is levitated following the electromagnetic suspension principle using the attractive magnetic force of a wire-wound electromagnet with a hall-effect sensor for position feedback. Taking the hall-effect voltage as an analog parameter and feedback signal to the micro-controller, the strength of the electromagnet is controlled by adjusting the current using the Pulse Width Modulation technique in order to levitate the permanent magnet. The stability of the levitated magnet is enhanced by the use of PID algorithm in the embedded system. Use of Laplace transform for simplification of differential equations and Taylor series for the linearization of system function supports the mathematical computation required for the levitation. Furthermore, by making the feedback signal from hall-effect sensor dependent only on the magnetic field of levitating magnet, an advancement in levitation phenomenon is achieved that aids the levitation with a greater flexibility of changing the position of the levitating magnet along the gravitational axis within a specified range.So the paper depicts about the \"Controlled Position Navigation of Single Degree Magnetic Levitation\".","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled Position Navigation of Single Degree Magnetic Levitation\",\"authors\":\"Dhiraj Basnet, Anusha Lamichhane, Amrit Panthi, Bipin Lamichhane, M. Badrudoza, R. Pandey\",\"doi\":\"10.11591/eecsi.v6i0.2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A permanent magnet is levitated following the electromagnetic suspension principle using the attractive magnetic force of a wire-wound electromagnet with a hall-effect sensor for position feedback. Taking the hall-effect voltage as an analog parameter and feedback signal to the micro-controller, the strength of the electromagnet is controlled by adjusting the current using the Pulse Width Modulation technique in order to levitate the permanent magnet. The stability of the levitated magnet is enhanced by the use of PID algorithm in the embedded system. Use of Laplace transform for simplification of differential equations and Taylor series for the linearization of system function supports the mathematical computation required for the levitation. Furthermore, by making the feedback signal from hall-effect sensor dependent only on the magnetic field of levitating magnet, an advancement in levitation phenomenon is achieved that aids the levitation with a greater flexibility of changing the position of the levitating magnet along the gravitational axis within a specified range.So the paper depicts about the \\\"Controlled Position Navigation of Single Degree Magnetic Levitation\\\".\",\"PeriodicalId\":20498,\"journal\":{\"name\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eecsi.v6i0.2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v6i0.2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controlled Position Navigation of Single Degree Magnetic Levitation
A permanent magnet is levitated following the electromagnetic suspension principle using the attractive magnetic force of a wire-wound electromagnet with a hall-effect sensor for position feedback. Taking the hall-effect voltage as an analog parameter and feedback signal to the micro-controller, the strength of the electromagnet is controlled by adjusting the current using the Pulse Width Modulation technique in order to levitate the permanent magnet. The stability of the levitated magnet is enhanced by the use of PID algorithm in the embedded system. Use of Laplace transform for simplification of differential equations and Taylor series for the linearization of system function supports the mathematical computation required for the levitation. Furthermore, by making the feedback signal from hall-effect sensor dependent only on the magnetic field of levitating magnet, an advancement in levitation phenomenon is achieved that aids the levitation with a greater flexibility of changing the position of the levitating magnet along the gravitational axis within a specified range.So the paper depicts about the "Controlled Position Navigation of Single Degree Magnetic Levitation".